Cho 1/x+1/y-1/z=0. Tính S=xy/z^2-yz/x^2-zx/y^2 30/09/2021 Bởi Peyton Cho 1/x+1/y-1/z=0. Tính S=xy/z^2-yz/x^2-zx/y^2
Đáp án: $S=3$ Giải thích các bước giải: ĐKXĐ: $x,y,z\ne 0$ Ta có: $\dfrac{1}{x} + \dfrac{1}{y} – \dfrac{1}{z} = 0 \Rightarrow \left\{ \begin{array}{l}\dfrac{1}{z} = \dfrac{1}{x} + \dfrac{1}{y}\\\dfrac{1}{x} = \dfrac{1}{z} – \dfrac{1}{y}\\\dfrac{1}{y} = \dfrac{1}{z} – \dfrac{1}{x}\end{array} \right.$ Khi đó: $\begin{array}{l}S = \dfrac{{xy}}{{{z^2}}} – \dfrac{{yz}}{{{x^2}}} – \dfrac{{zx}}{{{y^2}}}\\ = xy.{\left( {\dfrac{1}{x} + \dfrac{1}{y}} \right)^2} – yz.{\left( {\dfrac{1}{z} – \dfrac{1}{y}} \right)^2} – zx.{\left( {\dfrac{1}{z} – \dfrac{1}{x}} \right)^2}\\ = xy\left( {\dfrac{1}{{{x^2}}} + \dfrac{2}{{xy}} + \dfrac{1}{{{y^2}}}} \right) – yz\left( {\dfrac{1}{{{z^2}}} – \dfrac{2}{{yz}} + \dfrac{1}{{{y^2}}}} \right) – zx\left( {\dfrac{1}{{{z^2}}} – \dfrac{2}{{xz}} + \dfrac{1}{{{x^2}}}} \right)\\ = \dfrac{y}{x} + 2 + \dfrac{x}{y} – \dfrac{y}{z} + 2 – \dfrac{z}{y} – \dfrac{x}{z} + 2 – \dfrac{z}{x}\\ = 6 + \left( {\dfrac{y}{x} – \dfrac{y}{z}} \right) + \left( {\dfrac{x}{y} – \dfrac{x}{z}} \right) – \left( {\dfrac{z}{y} + \dfrac{z}{x}} \right)\\ = 6 + y\left( {\dfrac{1}{x} – \dfrac{1}{z}} \right) + x\left( {\dfrac{1}{y} – \dfrac{1}{z}} \right) – z\left( {\dfrac{1}{y} + \dfrac{1}{x}} \right)\\ = 6 + y.\left( {\dfrac{{ – 1}}{y}} \right) + x.\left( {\dfrac{{ – 1}}{x}} \right) – z.\dfrac{1}{z}\\ = 6 – 1 – 1 – 1\\ = 3\end{array}$ Vậy $S=3$ Bình luận
Đáp án:
$S=3$
Giải thích các bước giải:
ĐKXĐ: $x,y,z\ne 0$
Ta có:
$\dfrac{1}{x} + \dfrac{1}{y} – \dfrac{1}{z} = 0 \Rightarrow \left\{ \begin{array}{l}
\dfrac{1}{z} = \dfrac{1}{x} + \dfrac{1}{y}\\
\dfrac{1}{x} = \dfrac{1}{z} – \dfrac{1}{y}\\
\dfrac{1}{y} = \dfrac{1}{z} – \dfrac{1}{x}
\end{array} \right.$
Khi đó:
$\begin{array}{l}
S = \dfrac{{xy}}{{{z^2}}} – \dfrac{{yz}}{{{x^2}}} – \dfrac{{zx}}{{{y^2}}}\\
= xy.{\left( {\dfrac{1}{x} + \dfrac{1}{y}} \right)^2} – yz.{\left( {\dfrac{1}{z} – \dfrac{1}{y}} \right)^2} – zx.{\left( {\dfrac{1}{z} – \dfrac{1}{x}} \right)^2}\\
= xy\left( {\dfrac{1}{{{x^2}}} + \dfrac{2}{{xy}} + \dfrac{1}{{{y^2}}}} \right) – yz\left( {\dfrac{1}{{{z^2}}} – \dfrac{2}{{yz}} + \dfrac{1}{{{y^2}}}} \right) – zx\left( {\dfrac{1}{{{z^2}}} – \dfrac{2}{{xz}} + \dfrac{1}{{{x^2}}}} \right)\\
= \dfrac{y}{x} + 2 + \dfrac{x}{y} – \dfrac{y}{z} + 2 – \dfrac{z}{y} – \dfrac{x}{z} + 2 – \dfrac{z}{x}\\
= 6 + \left( {\dfrac{y}{x} – \dfrac{y}{z}} \right) + \left( {\dfrac{x}{y} – \dfrac{x}{z}} \right) – \left( {\dfrac{z}{y} + \dfrac{z}{x}} \right)\\
= 6 + y\left( {\dfrac{1}{x} – \dfrac{1}{z}} \right) + x\left( {\dfrac{1}{y} – \dfrac{1}{z}} \right) – z\left( {\dfrac{1}{y} + \dfrac{1}{x}} \right)\\
= 6 + y.\left( {\dfrac{{ – 1}}{y}} \right) + x.\left( {\dfrac{{ – 1}}{x}} \right) – z.\dfrac{1}{z}\\
= 6 – 1 – 1 – 1\\
= 3
\end{array}$
Vậy $S=3$