cho 1/a+ 1/b+ 1/c = 2 va 2/ab – 1/c^2 = 4 . tinh P = (a + 2b +c )^2020

cho 1/a+ 1/b+ 1/c = 2 va 2/ab – 1/c^2 = 4 . tinh P = (a + 2b +c )^2020

0 bình luận về “cho 1/a+ 1/b+ 1/c = 2 va 2/ab – 1/c^2 = 4 . tinh P = (a + 2b +c )^2020”

  1. Đáp án: $P=1$

    Giải thích các bước giải:

    Ta có:

    $\dfrac1a+\dfrac1b+\dfrac1c=2$

    $\to \dfrac1a+\dfrac1b=2-\dfrac1c$

    $\to (\dfrac1a+\dfrac1b)^2=(2-\dfrac1c)^2$

    $\to \dfrac1{a^2}+\dfrac1{b^2}+\dfrac{2}{ab}=4-\dfrac4c+\dfrac{1}{c^2}$

    $\to \dfrac1{a^2}+\dfrac1{b^2}+\dfrac{2}{ab}-\dfrac{1}{c^2}=4-\dfrac4c$

    $\to \dfrac1{a^2}+\dfrac1{b^2}+4=4-\dfrac4c$ vì $\dfrac{2}{ab}-\dfrac{1}{c^2}=4$

    $\to \dfrac1{a^2}+\dfrac1{b^2}=-\dfrac4c$

    $\to \dfrac1{a^2}+\dfrac1{b^2}+\dfrac4c=0$

    $\to \dfrac1{a^2}+\dfrac1{b^2}+4(2-\dfrac1a-\dfrac1b)=0$ vì $\dfrac1a+\dfrac1b+\dfrac1c=2$

    $\to (\dfrac1{a^2}-\dfrac4{a}+4)+(\dfrac{1}{b^2}-\dfrac4b+4)=0$

    $\to (\dfrac1a-2)^2+(\dfrac1b-2)^2=0$

    $\to \dfrac1a-2=\dfrac1b-2=0$

    $\to a=b=\dfrac12\to c=-\dfrac12$

    $\to a+2b+c=1$

    $\to P=(a+2b+c)^{2020}=1^{2020}=1$

    Bình luận

Viết một bình luận