Cho 100 số nguyên bất kì. Chứng minh ta luôn tìm được 1 số hoặc 1 số số có tổng chia hết cho 100

Cho 100 số nguyên bất kì. Chứng minh ta luôn tìm được 1 số hoặc 1 số số có tổng chia hết
cho 100

0 bình luận về “Cho 100 số nguyên bất kì. Chứng minh ta luôn tìm được 1 số hoặc 1 số số có tổng chia hết cho 100”

  1. Đáp án: vote mình nha

     

    Giải thích các bước giải:

     Ta xét các số

    S1=a1

    S2=a1+a2

    S3=a1+a2+a3

    ….

    S100=a1+a2+a3+…+a100

    TH1  Nếu tồn tại 1 số S(k) chia hết cho 100 ta có đpcm k=1,2,3,…,100

    TH2  Không tồn tại 1 số S(k) chia hết cho 100

    Ta chia S(k) cho 100 thì nhận được các số dư 1,2,3,…,99.Vì có 100 số dư mà chỉ có 99 giá trị nên theo nguyên lí đi dép lê tồn tại 2 số có số dư bằng nhau khi đó ta có Sx-Sy chia hết cho 100 (1< hoặc bằng x,y< hoặc bằng 100)

    Bình luận

Viết một bình luận