Cho x^2-x-3m+1 (m thuộc R) Tìm m dể phương trình có 2 nghiệm thỏa mãn x1- 2×2=4

Cho x^2-x-3m+1 (m thuộc R) Tìm m dể phương trình có 2 nghiệm thỏa mãn x1- 2×2=4

0 bình luận về “Cho x^2-x-3m+1 (m thuộc R) Tìm m dể phương trình có 2 nghiệm thỏa mãn x1- 2×2=4”

  1. Đáp án:

     m=1

    Giải thích các bước giải:

    \(\begin{array}{l}
    {x^2} – x – 3m + 1 = 0\\
    Xét:\Delta  = 1 – 4\left( { – 3m + 1} \right) \ge 0\\
     \to 1 + 12m – 4 \ge 0\\
     \to 12m – 3 \ge 0\\
     \to m \ge \dfrac{1}{4}\\
     \to \left[ \begin{array}{l}
    x = \dfrac{{1 + \sqrt {12m – 3} }}{2}\\
    x = \dfrac{{1 – \sqrt {12m – 3} }}{2}
    \end{array} \right.\\
    Có:{x_1} – 2{x_2} = 4\\
     \to {x_1} + {x_2} – 3{x_2} = 4\\
     \to \left[ \begin{array}{l}
    1 – 3\left( {\dfrac{{1 + \sqrt {12m – 3} }}{2}} \right) = 4\\
    1 – 3\left( {\dfrac{{1 – \sqrt {12m – 3} }}{2}} \right) = 4
    \end{array} \right.\\
     \to \left[ \begin{array}{l}
    2 – 3 – 3\sqrt {12m – 3}  = 8\\
    2 – 3 + 3\sqrt {12m – 3}  = 8
    \end{array} \right.\\
     \to \left[ \begin{array}{l}
    3\sqrt {12m – 3}  =  – 9\left( l \right)\\
    3\sqrt {12m – 3}  = 9
    \end{array} \right.\\
     \to \sqrt {12m – 3}  = 3\\
     \to 12m – 3 = 9\\
     \to 12m = 12\\
     \to m = 1\left( {TM} \right)
    \end{array}\)

    Bình luận

Viết một bình luận