Cho 2 đa thức: M = 2x^2 – 2xy – 3y^2 + 1 N = x^2 – 2xy + 3x^2 – 1 a, Tính M + N b, Tính M – N 24/08/2021 Bởi Adalynn Cho 2 đa thức: M = 2x^2 – 2xy – 3y^2 + 1 N = x^2 – 2xy + 3x^2 – 1 a, Tính M + N b, Tính M – N
a) `M + N= 2x^2 – 2xy – 3y^2 +1 + x^2 – 2xy + 3x^2 -1` `M+N= ( 2x^2 + x^2 +3x^2 ) – (2xy + 2xy) – 3y^2 +(1-1)` `M+N = 6x^2 – 4xy- 3y^2` b) `M- N= 2x^2 – 2xy – 3y^2 +1 – x^2 + 2xy – 3x^2 +1` `M-N= (2x^2 – x^2 – 3x^2) – (2xy – 2xy) – 3y^2 + (1+1)` `M-N = -2x^2 – 3y^2 + 2` Bình luận
a) $M+N=2x^2-2xy-3y^2+1+x^2-2xy+3x^2+1$ $=(2x^2+x^2+3x^2)-(2xy+2xy)-3y^2+(1-1)$ $=6x^2-4xy-3y^2$ b) $M-N=2x^2-2xy-3y^2+1-x^2+2xy-3x^2+1$ $=(2x^2-x^2-3x^2)-(2xy-2xy)-3y^2+(1+1)$ $=-2x^2-3y^2+2$ Bình luận
a) `M + N= 2x^2 – 2xy – 3y^2 +1 + x^2 – 2xy + 3x^2 -1`
`M+N= ( 2x^2 + x^2 +3x^2 ) – (2xy + 2xy) – 3y^2 +(1-1)`
`M+N = 6x^2 – 4xy- 3y^2`
b) `M- N= 2x^2 – 2xy – 3y^2 +1 – x^2 + 2xy – 3x^2 +1`
`M-N= (2x^2 – x^2 – 3x^2) – (2xy – 2xy) – 3y^2 + (1+1)`
`M-N = -2x^2 – 3y^2 + 2`
a) $M+N=2x^2-2xy-3y^2+1+x^2-2xy+3x^2+1$
$=(2x^2+x^2+3x^2)-(2xy+2xy)-3y^2+(1-1)$
$=6x^2-4xy-3y^2$
b) $M-N=2x^2-2xy-3y^2+1-x^2+2xy-3x^2+1$
$=(2x^2-x^2-3x^2)-(2xy-2xy)-3y^2+(1+1)$
$=-2x^2-3y^2+2$