cho 2 đường tròn cùng tâm O ;bán kính lần lượt là: R và 2R.từ điểm A cách O một khoảng bằng 4R vẽ 2 tiếp tuyến AB;AC với đường tròn lớn;AD;AE với đườn

cho 2 đường tròn cùng tâm O ;bán kính lần lượt là: R và 2R.từ điểm A cách O một khoảng bằng 4R vẽ 2 tiếp tuyến AB;AC với đường tròn lớn;AD;AE với đường tròn nhỏ(AB;ADcùng thuộc 1 nửa mặt phẳng bờ là AO) chứng minh: a) BC là tiếp tuyến đường tròn nhỏ; b)chứng minh tứ giác BCED là hình thang cân ;c)tính diện tích của hình thang cân BCDE

0 bình luận về “cho 2 đường tròn cùng tâm O ;bán kính lần lượt là: R và 2R.từ điểm A cách O một khoảng bằng 4R vẽ 2 tiếp tuyến AB;AC với đường tròn lớn;AD;AE với đườn”

  1. Giải thích các bước giải:

    a.Ta có:

    AB, AC là tiếp tuyến của (O,2R)

    $\rightarrow OA\perp BC=H$

    $\rightarrow OB^2=OH.OA\rightarrow (2R)^2=OH.4R\rightarrow OH=R$

    mà $OH\perp BC\rightarrow$ BC là tiếp tuyến của (O,R)

    b.Lại có AD,AE là tiếp tuyến từ A đến (O,R)

    $\rightarrow D,E$ đối xứng nhau qua OA

    Tương tự $B,C$ đối xứng nhau qua OA

    $\rightarrow\Diamond BCED$ là hình thang cân

    c.Gọi $DE\cap OA=I$

    $\rightarrow OD^2=OI.OA\rightarrow OI=\dfrac{OD^2}{OA}=\dfrac{R^2}{4R}=\dfrac{R}{4}$

    $\rightarrow DI=\sqrt{OD^2-OI^2}=\dfrac{R\sqrt{15}}{4}\rightarrow DE=2DI=\dfrac{R\sqrt{15}}{2}$

    Tương tự $BC=2R$

    $S_{BCED}=\dfrac{1}{2}.OH.(DE+BC)\dfrac{1}{2}.R.(\dfrac{R\sqrt{15}}{2}+2R)=\dfrac{4+\sqrt{15}}{4}$

    Bình luận

Viết một bình luận