Cho $x^2 – y^2 – z^2 =0$ Chứng minh $(5x-3y+4z)(5x-3y-4z)=(3x-5y)^2$ 26/07/2021 Bởi Aubrey Cho $x^2 – y^2 – z^2 =0$ Chứng minh $(5x-3y+4z)(5x-3y-4z)=(3x-5y)^2$
Đáp án: Giải thích các bước giải: Xét: $(5x-3y+4z)(5x-3y-4z)-(3x-5y)^2$ $=(5x-3y)^2 – 16z^2 – (3x-5y)^2 $$= (5x-3y-3x+5y)(5x-3y+3x-5y) – 16z^2 $$= (2x+2y)(8x-8y) – 16z^2 $$= 2(x+y) . 8(x-y) – 16z^2 $$= 16(x^2 – y^2) – 16z^2 $$= 16 (x^2-y^2-z^2) $ Thay $x^2 – y^2 – z^2 = 0$$= 16 . 0 $ $= 0$$⇒(5x-3y+4z)(5x-3y-4z)- (3x-5y)^2 = 0$ $⇒(5x-3y+4z)(5x-3y-4z) = (3x – 5y)^2 $ (điều phải chứng minh) Bình luận
Đáp án: Ta có : `(5x – 3y + 4z)(5x – 3y – 4z) – (3x – 5y)^2` ` = (5x – 3y)^2 – (4z)^2 – (3x – 5y)^2` ` = (5x – 3y)^2 – 16z^2 – (3x – 5y)^2` ` = [(5x – 3y)^2 – (3x – 5y)^2] – 16z^2` ` = (5x – 3y – 3x + 5y)(5x – 3y + 3x – 5y) – 16z^2` ` = (2x + 2y)(8x – 8y) – 16z^2` ` = 2(x + y).8(x – y) – 16z^2` ` = 16(x + y)(x – y) – 16z^2` ` = 16(x^2 – y^2) – 16z^2` ` = 16(x^2 – y^2 – z^2)` `= 16.0` `= 0 ` `=> (5x – 3y + 4z)(5x – 3y – 4z) – (3x – 5y)^2 = 0` `=> (5x – 3y + 4z)(5x – 3y – 4z) = (3x – 5y)^2` (đpcm) Giải thích các bước giải: Bình luận
Đáp án:
Giải thích các bước giải:
Xét: $(5x-3y+4z)(5x-3y-4z)-(3x-5y)^2$
$=(5x-3y)^2 – 16z^2 – (3x-5y)^2 $
$= (5x-3y-3x+5y)(5x-3y+3x-5y) – 16z^2 $
$= (2x+2y)(8x-8y) – 16z^2 $
$= 2(x+y) . 8(x-y) – 16z^2 $
$= 16(x^2 – y^2) – 16z^2 $
$= 16 (x^2-y^2-z^2) $
Thay $x^2 – y^2 – z^2 = 0$
$= 16 . 0 $
$= 0$
$⇒(5x-3y+4z)(5x-3y-4z)- (3x-5y)^2 = 0$
$⇒(5x-3y+4z)(5x-3y-4z) = (3x – 5y)^2 $ (điều phải chứng minh)
Đáp án:
Ta có :
`(5x – 3y + 4z)(5x – 3y – 4z) – (3x – 5y)^2`
` = (5x – 3y)^2 – (4z)^2 – (3x – 5y)^2`
` = (5x – 3y)^2 – 16z^2 – (3x – 5y)^2`
` = [(5x – 3y)^2 – (3x – 5y)^2] – 16z^2`
` = (5x – 3y – 3x + 5y)(5x – 3y + 3x – 5y) – 16z^2`
` = (2x + 2y)(8x – 8y) – 16z^2`
` = 2(x + y).8(x – y) – 16z^2`
` = 16(x + y)(x – y) – 16z^2`
` = 16(x^2 – y^2) – 16z^2`
` = 16(x^2 – y^2 – z^2)`
`= 16.0`
`= 0 `
`=> (5x – 3y + 4z)(5x – 3y – 4z) – (3x – 5y)^2 = 0`
`=> (5x – 3y + 4z)(5x – 3y – 4z) = (3x – 5y)^2` (đpcm)
Giải thích các bước giải: