Cho `x>2018; y>2018` thỏa mãn `1/x+1/y=1/2018` Tính `P=(sqrt(x+y))/(sqrt(x-2018)+sqrt(y-2018))` 06/12/2021 Bởi Everleigh Cho `x>2018; y>2018` thỏa mãn `1/x+1/y=1/2018` Tính `P=(sqrt(x+y))/(sqrt(x-2018)+sqrt(y-2018))`
Đáp án: Giải thích các bước giải: Ta có: $\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2018} ⇔\dfrac{x+y}{xy}=\dfrac{1}{2018}$ $⇒\dfrac{xy}{x+y}=2018$ Đồng thời cũng suy ra: $x+y=\dfrac{xy}{2018} ⇔\sqrt{x+y}=\sqrt{\dfrac{xy}{2018}}$ (1) Lại có: $\dfrac{1}{x}=\dfrac{1}{2018}-\dfrac{1}{y}=\dfrac{y-2018}{2018y}$ $⇒y-2018=\dfrac{2018y}{x}$ $⇒\sqrt{y-2018}=\sqrt{\dfrac{2018y}{x}}$ Hoàn toàn tương tự ta có: $\sqrt{x-2018}=\sqrt{\dfrac{2018x}{y}}$ $⇒\sqrt{y-2018}+\sqrt{x-2018}=\sqrt{\dfrac{2018y}{x}}+\sqrt{\dfrac{2018x}{y}}$ $⇔\sqrt{y-2018}+\sqrt{x-2018}=(x+y)\sqrt{\dfrac{2018}{xy}}$ (2) Từ (1) và (2): $⇒P=\dfrac{\sqrt{\dfrac{xy}{2018}}}{(x+y)\sqrt{\dfrac{2018}{xy}}}=\dfrac{xy}{2018(x+y)}=1$ Bình luận
$Đáp án:P=1\\Giải:\\-Vì theo bài cho:\left \{\matrix {{x>2018} \hfill\cr {y>2018}} \right.\\Và\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2018}\\Nên:\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2018}⇒\dfrac{1}{x}= \dfrac{1}{2018}-\dfrac{1}{y}=\dfrac{y-2018}{2018y}\\⇒y-2018=\dfrac{2018y}{x}\\⇒\sqrt[]{y-2018}=\sqrt[]{\dfrac{2018y}{x}} (1)\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2018}\\⇒\dfrac{1}{y}=\dfrac{1}{2018}- \dfrac{1}{x}=\dfrac{x-2018}{2018x}\\⇒x-2018= \dfrac{2018x}{y}\\⇒\sqrt[]{x-2018}= \sqrt[]{\dfrac{2018x}{y}} (2)\\-Từ (1) và (2),Ta có:\\ \sqrt[]{x-2018}+\sqrt[]{y-2018} =\sqrt[]{\dfrac{2018x}{y}}+\sqrt[]{\dfrac{2018y}{x}}=\sqrt[]{2018}.(\sqrt[]{\dfrac{x}{y}}+\sqrt[]{\dfrac{y}{x}}) =\sqrt[]{2018}. \dfrac{x+y}{\sqrt[]{xy}}= \sqrt[]{2018}.\sqrt[]{x+y}. \sqrt[]{\dfrac{1}{x}+\dfrac{1}{y}} = \sqrt[]{x+y}. \sqrt[]{2018}.\dfrac{1}{\sqrt[]{2018}}=\sqrt[]{x+1}\\-Tính giá trị của P\\P= \dfrac{\sqrt[]{x+y}}{\sqrt{x-2018}+\sqrt{y-2018}}=\dfrac{\sqrt[]{x+y}}{\sqrt[]{x+y}}=1\\Vậy P=1\\Chúc bạn học tốt…$ Bình luận
Đáp án:
Giải thích các bước giải:
Ta có:
$\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2018} ⇔\dfrac{x+y}{xy}=\dfrac{1}{2018}$
$⇒\dfrac{xy}{x+y}=2018$
Đồng thời cũng suy ra:
$x+y=\dfrac{xy}{2018} ⇔\sqrt{x+y}=\sqrt{\dfrac{xy}{2018}}$ (1)
Lại có:
$\dfrac{1}{x}=\dfrac{1}{2018}-\dfrac{1}{y}=\dfrac{y-2018}{2018y}$
$⇒y-2018=\dfrac{2018y}{x}$
$⇒\sqrt{y-2018}=\sqrt{\dfrac{2018y}{x}}$
Hoàn toàn tương tự ta có: $\sqrt{x-2018}=\sqrt{\dfrac{2018x}{y}}$
$⇒\sqrt{y-2018}+\sqrt{x-2018}=\sqrt{\dfrac{2018y}{x}}+\sqrt{\dfrac{2018x}{y}}$
$⇔\sqrt{y-2018}+\sqrt{x-2018}=(x+y)\sqrt{\dfrac{2018}{xy}}$ (2)
Từ (1) và (2):
$⇒P=\dfrac{\sqrt{\dfrac{xy}{2018}}}{(x+y)\sqrt{\dfrac{2018}{xy}}}=\dfrac{xy}{2018(x+y)}=1$
$Đáp án:P=1\\Giải:\\-Vì theo bài cho:\left \{\matrix {{x>2018} \hfill\cr {y>2018}} \right.\\Và\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2018}\\Nên:\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2018}⇒\dfrac{1}{x}= \dfrac{1}{2018}-\dfrac{1}{y}=\dfrac{y-2018}{2018y}\\⇒y-2018=\dfrac{2018y}{x}\\⇒\sqrt[]{y-2018}=\sqrt[]{\dfrac{2018y}{x}} (1)\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2018}\\⇒\dfrac{1}{y}=\dfrac{1}{2018}- \dfrac{1}{x}=\dfrac{x-2018}{2018x}\\⇒x-2018= \dfrac{2018x}{y}\\⇒\sqrt[]{x-2018}= \sqrt[]{\dfrac{2018x}{y}} (2)\\-Từ (1) và (2),Ta có:\\ \sqrt[]{x-2018}+\sqrt[]{y-2018} =\sqrt[]{\dfrac{2018x}{y}}+\sqrt[]{\dfrac{2018y}{x}}=\sqrt[]{2018}.(\sqrt[]{\dfrac{x}{y}}+\sqrt[]{\dfrac{y}{x}}) =\sqrt[]{2018}. \dfrac{x+y}{\sqrt[]{xy}}= \sqrt[]{2018}.\sqrt[]{x+y}. \sqrt[]{\dfrac{1}{x}+\dfrac{1}{y}} = \sqrt[]{x+y}. \sqrt[]{2018}.\dfrac{1}{\sqrt[]{2018}}=\sqrt[]{x+1}\\-Tính giá trị của P\\P= \dfrac{\sqrt[]{x+y}}{\sqrt{x-2018}+\sqrt{y-2018}}=\dfrac{\sqrt[]{x+y}}{\sqrt[]{x+y}}=1\\Vậy P=1\\Chúc bạn học tốt…$