Cho -x+3 ______ x-2 Tìm tích để A>=1 A<1/5 A>1/6 11/08/2021 Bởi Katherine Cho -x+3 ______ x-2 Tìm tích để A>=1 A<1/5 A>1/6
Đáp án: c. \(\left\{ \begin{array}{l}x < \dfrac{{20}}{7}\\x > 2\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}DK:x \ne 2\\A = \dfrac{{ – x + 3}}{{x – 2}}\\A \ge 1\\ \to \dfrac{{ – x + 3}}{{x – 2}} \ge 1\\ \to \dfrac{{ – x + 3 – x + 2}}{{x – 2}} \ge 0\\ \to \dfrac{{ – 2x + 5}}{{x – 2}} \ge 0\\ \to \left[ \begin{array}{l}\left\{ \begin{array}{l} – 2x + 5 \ge 0\\x – 2 > 0\end{array} \right.\\\left\{ \begin{array}{l} – 2x + 5 \le 0\\x – 4 < 0\end{array} \right.\end{array} \right. \to \left[ \begin{array}{l}\left\{ \begin{array}{l}x \le – \dfrac{5}{2}\\x > 2\end{array} \right.\left( l \right)\\\left\{ \begin{array}{l}x \ge – \dfrac{5}{2}\\x < 4\end{array} \right.\end{array} \right.\\ \to – \dfrac{5}{2} \le x < 4\\A < \dfrac{1}{5}\\ \to \dfrac{{ – x + 3}}{{x – 2}} < \dfrac{1}{5}\\ \to \dfrac{{ – 5x + 15 – x + 2}}{{5\left( {x – 2} \right)}} < 0\\ \to \dfrac{{ – 6x + 17}}{{5\left( {x – 2} \right)}} < 0\\ \to \left[ \begin{array}{l}\left\{ \begin{array}{l} – 6x + 17 > 0\\x – 2 < 0\end{array} \right.\\\left\{ \begin{array}{l} – 6x + 17 < 0\\x – 2 > 0\end{array} \right.\end{array} \right.\\ \to \left[ \begin{array}{l}\left\{ \begin{array}{l}x < \dfrac{{17}}{6}\\x < 2\end{array} \right.\\\left\{ \begin{array}{l}x > \dfrac{{17}}{6}\\x > 2\end{array} \right.\end{array} \right.\\ \to \left[ \begin{array}{l}x > \dfrac{{17}}{6}\\x < 2\end{array} \right.\\A > \dfrac{1}{6}\\ \to \dfrac{{ – x + 3}}{{x – 2}} > \dfrac{1}{6}\\ \to \dfrac{{ – 6x + 18 – x + 2}}{{6\left( {x – 2} \right)}} > 0\\ \to \dfrac{{ – 7x + 20}}{{6\left( {x – 2} \right)}} > 0\\ \to \left[ \begin{array}{l}\left\{ \begin{array}{l} – 7x + 20 > 0\\x – 2 > 0\end{array} \right.\\\left\{ \begin{array}{l} – 7x + 20 < 0\\x – 2 < 0\end{array} \right.\end{array} \right. \to \left[ \begin{array}{l}\left\{ \begin{array}{l}x < \dfrac{{20}}{7}\\x > 2\end{array} \right.\\\left\{ \begin{array}{l}x > \dfrac{{20}}{7}\\x < 2\end{array} \right.\left( l \right)\end{array} \right.\\ \to \left\{ \begin{array}{l}x < \dfrac{{20}}{7}\\x > 2\end{array} \right.\end{array}\) Bình luận
Đáp án:
c. \(\left\{ \begin{array}{l}
x < \dfrac{{20}}{7}\\
x > 2
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
DK:x \ne 2\\
A = \dfrac{{ – x + 3}}{{x – 2}}\\
A \ge 1\\
\to \dfrac{{ – x + 3}}{{x – 2}} \ge 1\\
\to \dfrac{{ – x + 3 – x + 2}}{{x – 2}} \ge 0\\
\to \dfrac{{ – 2x + 5}}{{x – 2}} \ge 0\\
\to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
– 2x + 5 \ge 0\\
x – 2 > 0
\end{array} \right.\\
\left\{ \begin{array}{l}
– 2x + 5 \le 0\\
x – 4 < 0
\end{array} \right.
\end{array} \right. \to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x \le – \dfrac{5}{2}\\
x > 2
\end{array} \right.\left( l \right)\\
\left\{ \begin{array}{l}
x \ge – \dfrac{5}{2}\\
x < 4
\end{array} \right.
\end{array} \right.\\
\to – \dfrac{5}{2} \le x < 4\\
A < \dfrac{1}{5}\\
\to \dfrac{{ – x + 3}}{{x – 2}} < \dfrac{1}{5}\\
\to \dfrac{{ – 5x + 15 – x + 2}}{{5\left( {x – 2} \right)}} < 0\\
\to \dfrac{{ – 6x + 17}}{{5\left( {x – 2} \right)}} < 0\\
\to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
– 6x + 17 > 0\\
x – 2 < 0
\end{array} \right.\\
\left\{ \begin{array}{l}
– 6x + 17 < 0\\
x – 2 > 0
\end{array} \right.
\end{array} \right.\\
\to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x < \dfrac{{17}}{6}\\
x < 2
\end{array} \right.\\
\left\{ \begin{array}{l}
x > \dfrac{{17}}{6}\\
x > 2
\end{array} \right.
\end{array} \right.\\
\to \left[ \begin{array}{l}
x > \dfrac{{17}}{6}\\
x < 2
\end{array} \right.\\
A > \dfrac{1}{6}\\
\to \dfrac{{ – x + 3}}{{x – 2}} > \dfrac{1}{6}\\
\to \dfrac{{ – 6x + 18 – x + 2}}{{6\left( {x – 2} \right)}} > 0\\
\to \dfrac{{ – 7x + 20}}{{6\left( {x – 2} \right)}} > 0\\
\to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
– 7x + 20 > 0\\
x – 2 > 0
\end{array} \right.\\
\left\{ \begin{array}{l}
– 7x + 20 < 0\\
x – 2 < 0
\end{array} \right.
\end{array} \right. \to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x < \dfrac{{20}}{7}\\
x > 2
\end{array} \right.\\
\left\{ \begin{array}{l}
x > \dfrac{{20}}{7}\\
x < 2
\end{array} \right.\left( l \right)
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x < \dfrac{{20}}{7}\\
x > 2
\end{array} \right.
\end{array}\)