Cho -x+3 ______ x-2 Tìm tích để A>=1 A<1/5 A>1/6

Cho -x+3
______
x-2
Tìm tích để A>=1
A<1/5 A>1/6

0 bình luận về “Cho -x+3 ______ x-2 Tìm tích để A>=1 A<1/5 A>1/6”

  1. Đáp án:

    c. \(\left\{ \begin{array}{l}
    x < \dfrac{{20}}{7}\\
    x > 2
    \end{array} \right.\)

    Giải thích các bước giải:

    \(\begin{array}{l}
    DK:x \ne 2\\
    A = \dfrac{{ – x + 3}}{{x – 2}}\\
    A \ge 1\\
     \to \dfrac{{ – x + 3}}{{x – 2}} \ge 1\\
     \to \dfrac{{ – x + 3 – x + 2}}{{x – 2}} \ge 0\\
     \to \dfrac{{ – 2x + 5}}{{x – 2}} \ge 0\\
     \to \left[ \begin{array}{l}
    \left\{ \begin{array}{l}
     – 2x + 5 \ge 0\\
    x – 2 > 0
    \end{array} \right.\\
    \left\{ \begin{array}{l}
     – 2x + 5 \le 0\\
    x – 4 < 0
    \end{array} \right.
    \end{array} \right. \to \left[ \begin{array}{l}
    \left\{ \begin{array}{l}
    x \le  – \dfrac{5}{2}\\
    x > 2
    \end{array} \right.\left( l \right)\\
    \left\{ \begin{array}{l}
    x \ge  – \dfrac{5}{2}\\
    x < 4
    \end{array} \right.
    \end{array} \right.\\
     \to  – \dfrac{5}{2} \le x < 4\\
    A < \dfrac{1}{5}\\
     \to \dfrac{{ – x + 3}}{{x – 2}} < \dfrac{1}{5}\\
     \to \dfrac{{ – 5x + 15 – x + 2}}{{5\left( {x – 2} \right)}} < 0\\
     \to \dfrac{{ – 6x + 17}}{{5\left( {x – 2} \right)}} < 0\\
     \to \left[ \begin{array}{l}
    \left\{ \begin{array}{l}
     – 6x + 17 > 0\\
    x – 2 < 0
    \end{array} \right.\\
    \left\{ \begin{array}{l}
     – 6x + 17 < 0\\
    x – 2 > 0
    \end{array} \right.
    \end{array} \right.\\
     \to \left[ \begin{array}{l}
    \left\{ \begin{array}{l}
    x < \dfrac{{17}}{6}\\
    x < 2
    \end{array} \right.\\
    \left\{ \begin{array}{l}
    x > \dfrac{{17}}{6}\\
    x > 2
    \end{array} \right.
    \end{array} \right.\\
     \to \left[ \begin{array}{l}
    x > \dfrac{{17}}{6}\\
    x < 2
    \end{array} \right.\\
    A > \dfrac{1}{6}\\
     \to \dfrac{{ – x + 3}}{{x – 2}} > \dfrac{1}{6}\\
     \to \dfrac{{ – 6x + 18 – x + 2}}{{6\left( {x – 2} \right)}} > 0\\
     \to \dfrac{{ – 7x + 20}}{{6\left( {x – 2} \right)}} > 0\\
     \to \left[ \begin{array}{l}
    \left\{ \begin{array}{l}
     – 7x + 20 > 0\\
    x – 2 > 0
    \end{array} \right.\\
    \left\{ \begin{array}{l}
     – 7x + 20 < 0\\
    x – 2 < 0
    \end{array} \right.
    \end{array} \right. \to \left[ \begin{array}{l}
    \left\{ \begin{array}{l}
    x < \dfrac{{20}}{7}\\
    x > 2
    \end{array} \right.\\
    \left\{ \begin{array}{l}
    x > \dfrac{{20}}{7}\\
    x < 2
    \end{array} \right.\left( l \right)
    \end{array} \right.\\
     \to \left\{ \begin{array}{l}
    x < \dfrac{{20}}{7}\\
    x > 2
    \end{array} \right.
    \end{array}\)

    Bình luận

Viết một bình luận