Cho (3x -2y)/2=(2z-4x)/3 =(4y-3z)/2 tính B=(xy+yz+zx)/x^2+y^2+z^2 30/08/2021 Bởi Athena Cho (3x -2y)/2=(2z-4x)/3 =(4y-3z)/2 tính B=(xy+yz+zx)/x^2+y^2+z^2
Đáp án: $B= \dfrac{{26}}{{25}}$ Giải thích các bước giải: \(\begin{array}{l}\dfrac{{3x – 2y}}{2} = \dfrac{{2z – 4x}}{3} = \dfrac{{4y – 3z}}{2}\\ \Rightarrow \dfrac{{2z – 4x}}{3} = \dfrac{{6x – 4y}}{4} = \dfrac{{4y – 3z}}{2}\\ = \dfrac{{6x – 4y + 4y – 3z}}{6} = \dfrac{{2z – 4x}}{3}\\ \Rightarrow \dfrac{{2x – z}}{2} = \dfrac{{2z – 4x}}{3}\\ \Rightarrow 6x – 3z = 4z – 8x \Rightarrow z = 2x\\ + )\,\dfrac{{3x – 2y}}{2} = \dfrac{{6z – 12x}}{9} = \dfrac{{8y – 6z}}{4}\\ = \dfrac{{6z – 12x + 8y – 6z}}{{13}}\\ \Rightarrow \dfrac{{3x – 2y}}{2} = \dfrac{{ – 12x + 8y}}{{13}}\\ \Rightarrow 39x – 26y = – 24x + 16y\\ \Leftrightarrow 63x = 42y \Rightarrow y = \dfrac{3}{2}x\\ \Rightarrow B = \dfrac{{x.\dfrac{3}{2}x + \dfrac{3}{2}x.2x + 2x.x}}{{{x^2} + {{\left( {\dfrac{3}{2}x} \right)}^2} + {{\left( {2x} \right)}^2}}}\\ = \dfrac{{\dfrac{{13}}{2}{x^2}}}{{\dfrac{{25}}{4}{x^2}}} = \dfrac{{26}}{{25}}\end{array}\) Bình luận
Đáp án:
$B= \dfrac{{26}}{{25}}$
Giải thích các bước giải:
\(\begin{array}{l}
\dfrac{{3x – 2y}}{2} = \dfrac{{2z – 4x}}{3} = \dfrac{{4y – 3z}}{2}\\
\Rightarrow \dfrac{{2z – 4x}}{3} = \dfrac{{6x – 4y}}{4} = \dfrac{{4y – 3z}}{2}\\
= \dfrac{{6x – 4y + 4y – 3z}}{6} = \dfrac{{2z – 4x}}{3}\\
\Rightarrow \dfrac{{2x – z}}{2} = \dfrac{{2z – 4x}}{3}\\
\Rightarrow 6x – 3z = 4z – 8x \Rightarrow z = 2x\\
+ )\,\dfrac{{3x – 2y}}{2} = \dfrac{{6z – 12x}}{9} = \dfrac{{8y – 6z}}{4}\\
= \dfrac{{6z – 12x + 8y – 6z}}{{13}}\\
\Rightarrow \dfrac{{3x – 2y}}{2} = \dfrac{{ – 12x + 8y}}{{13}}\\
\Rightarrow 39x – 26y = – 24x + 16y\\
\Leftrightarrow 63x = 42y \Rightarrow y = \dfrac{3}{2}x\\
\Rightarrow B = \dfrac{{x.\dfrac{3}{2}x + \dfrac{3}{2}x.2x + 2x.x}}{{{x^2} + {{\left( {\dfrac{3}{2}x} \right)}^2} + {{\left( {2x} \right)}^2}}}\\
= \dfrac{{\dfrac{{13}}{2}{x^2}}}{{\dfrac{{25}}{4}{x^2}}} = \dfrac{{26}}{{25}}
\end{array}\)