Cho 3 số dương a,b,c thỏa mãn `a+b ≤ c` . CMR : `(a^2 + b^2 + c^2)(1/a^2 + 1/b^2 + 1/c^2) ≥ 27/2` 10/07/2021 Bởi Ruby Cho 3 số dương a,b,c thỏa mãn `a+b ≤ c` . CMR : `(a^2 + b^2 + c^2)(1/a^2 + 1/b^2 + 1/c^2) ≥ 27/2`
Với `a;b;c>0` ta có: `\qquad (a-b)^2\ge 0` `<=>a^2+b^2-2ab\ge 0` `<=>a^2+2ab+b^2-4ab\ge 0` `<=>(a+b)^2\ge 4ab` $\\$ Vì `0<a+b\le c` `=>c^2\ge (a+b)^2\ge 4ab` Đặt `A=(a^2+b^2+c^2)(1/{a^2}+1/{b^2}+1/{c^2})` `=1+{a^2}/{b^2}+{a^2}/{c^2}+{b^2}/{a^2}+1+{b^2}/{c^2}+c^2.(1/{a^2}+1/{b^2})+1` `=3+({a^2}/{b^2}+{b^2}/{a^2})+({a^2}/{c^2}+{c^2}/{16a^2})+({b^2}/{c^2}+{c^2}/{16b^2})+{15c^2}/{16}. (1/{a^2}+1/{b^2})` Áp dụng BĐT Cosi ta có: `{a^2}/{b^2}+{b^2}/{a^2}\ge 2\sqrt{{a^2}/{b^2} .{b^2}/{a^2}}=2` `{a^2}/{c^2}+{c^2}/{16a^2}\ge 2\sqrt{{a^2}/{c^2} .{c^2}/{16a^2}}=1/ 2` `{b^2}/{c^2}+{c^2}/{16b^2}\ge 2\sqrt{{b^2}/{c^2} .{c^2}/{16b^2}}=1/ 2` `1/{a^2}+1/{b^2}\ge 2\sqrt{1/{a^2} . 1/{b^2}}=2/{ab} ` $\\$ `=>A\ge 3+2+1/2+1/2+{15}/{16}. 4ab . 2/{ab}` `\qquad ` (do `c^2\ge 4ab)` `=>A\ge 6+{15}/2={27}/2` Dấu “=” xảy ra khi `a=b=c/2` Vậy với `a;b;c` dương thỏa `a+b\le c` ta có: `(a^2+b^2+c^2)(1/{a^2}+1/{b^2}+1/{c^2})\ge {27}/2` Bình luận
Với `a;b;c>0` ta có:
`\qquad (a-b)^2\ge 0`
`<=>a^2+b^2-2ab\ge 0`
`<=>a^2+2ab+b^2-4ab\ge 0`
`<=>(a+b)^2\ge 4ab`
$\\$
Vì `0<a+b\le c`
`=>c^2\ge (a+b)^2\ge 4ab`
Đặt
`A=(a^2+b^2+c^2)(1/{a^2}+1/{b^2}+1/{c^2})`
`=1+{a^2}/{b^2}+{a^2}/{c^2}+{b^2}/{a^2}+1+{b^2}/{c^2}+c^2.(1/{a^2}+1/{b^2})+1`
`=3+({a^2}/{b^2}+{b^2}/{a^2})+({a^2}/{c^2}+{c^2}/{16a^2})+({b^2}/{c^2}+{c^2}/{16b^2})+{15c^2}/{16}. (1/{a^2}+1/{b^2})`
Áp dụng BĐT Cosi ta có:
`{a^2}/{b^2}+{b^2}/{a^2}\ge 2\sqrt{{a^2}/{b^2} .{b^2}/{a^2}}=2`
`{a^2}/{c^2}+{c^2}/{16a^2}\ge 2\sqrt{{a^2}/{c^2} .{c^2}/{16a^2}}=1/ 2`
`{b^2}/{c^2}+{c^2}/{16b^2}\ge 2\sqrt{{b^2}/{c^2} .{c^2}/{16b^2}}=1/ 2`
`1/{a^2}+1/{b^2}\ge 2\sqrt{1/{a^2} . 1/{b^2}}=2/{ab} `
$\\$
`=>A\ge 3+2+1/2+1/2+{15}/{16}. 4ab . 2/{ab}`
`\qquad ` (do `c^2\ge 4ab)`
`=>A\ge 6+{15}/2={27}/2`
Dấu “=” xảy ra khi `a=b=c/2`
Vậy với `a;b;c` dương thỏa `a+b\le c` ta có: `(a^2+b^2+c^2)(1/{a^2}+1/{b^2}+1/{c^2})\ge {27}/2`