Cho 6046 số nguyên trong đó 3 số nguyên bất kỳ luôn có tích âm . Hỏi tổng của 6046 số nguyên đó là dương hay âm ?
Tìm các cặp số nguyên x ; y thỏa mãn :
-3xy + 4y – 6x = 27 .
Cho 6046 số nguyên trong đó 3 số nguyên bất kỳ luôn có tích âm . Hỏi tổng của 6046 số nguyên đó là dương hay âm ?
Tìm các cặp số nguyên x ; y thỏa mãn :
-3xy + 4y – 6x = 27 .
Đáp án:
Giải thích các bước giải:
bai 1
Giả sử trong 6046 số đó có ít nhất 1 số nguyên dương, ta thấy:
Tích của 2 số nguyên âm là 1 số nguyên dương nên tích của 2 số nguyên âm và 1 số nguyên dương là một số nguyên dương
Do đó, để tích của 3 số nguyên âm bất kì là một số nguyên âm thì tất cả các số đó đều là số nguyên âm. Vì tích của 3 số nguyên âm là 1 số nguyên âm.
Do đó, cả 6046 số đã cho đều là số nguyên âm. tổng của chúng là một số nguyên âm.
Bài 2
Ta có
$-3xy + 4y – 6x = 27$
$<-> -3x(y + 2) + 4(y+2) = 35$
$<-> (-3x + 4)(y+2) = 35$
$<-> (4-3x)(y+2) = 35$
Do $x$ là số nguyên nên $4-3x$ chia 3 dư 1. Do đó
$(4-3x)(y+2)=1.35 = 7.5=-35(-1) = -5(-7)$
TH1: $(4-3x)(y+2) = 1.35=-35(-1)$
Vậy ta có $4-3x = 1$ và $y +2 = 35$ hay $x = 1$ và $y = 33$
Vậy ta có $4-3x = -35$ và $y + 2 = -1$ hay $x = 13$ và $y = -3$
TH2: $(4-3x)(y+2) = 7.5 = (-5)(-7)$
Vậy ta có $4-3x = 7$ và $y + 2 = 5$ hay $x = -1$ và $y = 3$
Vậy ta có $4-3x = -5$ và $y + 2 = -7$ hay $x = 3$ và $y = -9$