Cho `A=1/1.2+1/3.4+…+1/2005.2006` và `B=1/1004.2006+1/1005.2006+…+1/2006.1004`. Chứng minh `A/B inZ`.

Cho `A=1/1.2+1/3.4+…+1/2005.2006` và `B=1/1004.2006+1/1005.2006+…+1/2006.1004`.
Chứng minh `A/B inZ`.

0 bình luận về “Cho `A=1/1.2+1/3.4+…+1/2005.2006` và `B=1/1004.2006+1/1005.2006+…+1/2006.1004`. Chứng minh `A/B inZ`.”

  1. Giải thích các bước giải:

    A=$\frac{1}{1.2}$ +$\frac{1}{3.4}$ +….+$\frac{1}{2005.2006}$ 

    A=1-$\frac{1}{2}$ +$\frac{1}{3}$ -$\frac{1}{4}$ +….+$\frac{1}{2005}$ -$\frac{1}{2006}$ 

    A=(1+$\frac{1}{3}$ +$\frac{1}{5}$ +…+$\frac{1}{2005}$ )-($\frac{1}{2}$ +$\frac{1}{4}$ +$\frac{1}{6}$ +…..+$\frac{1}{2006}$ )

    A=(1+$\frac{1}{2}$ +$\frac{1}{3}$ +…+$\frac{1}{2006}$ )-2.($\frac{1}{2}$ +$\frac{1}{4}$ +$\frac{1}{6}$ +…..+$\frac{1}{2006}$ )

    A=(1+$\frac{1}{2}$ +$\frac{1}{3}$ +…+$\frac{1}{2006}$ )-(1+$\frac{1}{2}$ +$\frac{1}{3}$ …..+$\frac{1}{1003}$ )

    A=$\frac{1}{1004}$ +$\frac{1}{1005}$ +….+$\frac{1}{2006}$ 

    B=$\frac{1}{1004}$ .$\frac{1}{2006}$ +$\frac{1}{1005}$ .2006+…..+$\frac{1}{1006}$ .1004 3010

    B=1004+$\frac{2006}{1004}$ .2006+1005+$\frac{2006}{1005}$ .2006+…..+2006+$\frac{1004}{2006}$ .1004 3010

    B=$\frac{1}{2006}$ +$\frac{1}{1004}$ +$\frac{1}{1005}$ +$\frac{1}{1005}$ +….+$\frac{1}{1004}$ +$\frac{1}{2006}$ 3010

    B=2.(1/1004+1/1005+1/1006+….+1/2006)

    B=2.(1/1004+1/1005+1/1006+….+1/2006)/3010

    B=(1/1004+1/1005+1/1006+….+1/2006)/1505 ⇒A/

    B=(1/1004+1/1005+….+1/2006)/(1/1004+1/1005+1/1006+….+1/2006)/1505 ⇒A/B=1505

    Hay A/B ∈ Z

    ( Mk vt P/s thế thôi nhá còn đâu bn tự viết vào giúp mk. Bh mk bận nếu bn k hiểu thì tý mk vt tiếp cho)

    $ Xin Ctlhn$

    $@ nhuquynh1110$

    Bình luận
  2. Ta có : 

    $A$= $\dfrac{1}{1.2}$ + $\dfrac{1}{3.4}$ + … + $\dfrac{1}{2005.2006}$ 

    $A$ = $\dfrac{1}{1}$ – $\dfrac{1}{2}$ + $\dfrac{1}{3}$ – $\dfrac{1}{4}$ + … + $\dfrac{1}{2005}$ – $\dfrac{1}{2006}$ 

    $A$ = ( $\dfrac{1}{1}$ + $\dfrac{1}{3}$ + $\dfrac{1}{5}$ + …. + $\dfrac{1}{2005}$  ) – ( $\dfrac{1}{2}$ + $\dfrac{1}{4}$ + … + $\dfrac{1}{2006}$ )

    $A$ = ( $\dfrac{1}{1}$ + $\dfrac{1}{2}$ + $\dfrac{1}{3}$ + $\dfrac{1}{4}$  + $\dfrac{1}{5}$ + $\dfrac{1}{6}$ + …. + $\dfrac{1}{2005}$ + $\dfrac{1}{2006}$ ) – $2$ . (  $\dfrac{1}{2}$ + $\dfrac{1}{4}$ + … + $\dfrac{1}{2006}$ )

    $A$ = ( $\dfrac{1}{1}$ + $\dfrac{1}{2}$ + $\dfrac{1}{3}$ + $\dfrac{1}{4}$  + $\dfrac{1}{5}$ + $\dfrac{1}{6}$ + …. + $\dfrac{1}{2005}$ + $\dfrac{1}{2006}$ ) – ( $1$ + $\dfrac{1}{2}$ + … + $\dfrac{1}{1003}$ )

    $A$ = $\dfrac{1}{1004}$ + $\dfrac{1}{1005}$ + … + $\dfrac{1}{2006}$ ($1$)

    Ta lại có : 

    $B$ = $\dfrac{1}{1004 . 2006}$ + $\dfrac{1}{1005 . 2005 }$( cái này bị sai đề bạn nha ) + $…$ + $\dfrac{1}{2006 . 1004}$ 

    $3010B$ = $\dfrac{3010}{1004 . 2006}$ + $\dfrac{3010}{1005 . 2005 }$ + …. + $\dfrac{3010}{2006 . 1004}$

    $3010B$ = $\dfrac{1}{1004}$ + $\dfrac{1}{2006}$ + $\dfrac{1}{1005}$ + $\dfrac{1}{2005}$ + … + $\dfrac{1}{2006}$ + $\dfrac{1}{1004}$ = $2$ . ( $\dfrac{1}{1004}$ + $\dfrac{1}{1005}$ + … + $\dfrac{1}{2006}$ )

    ⇒ $B$ = $\dfrac{2 . ( \dfrac{1}{1004} + \dfrac{1}{1005} + … + \dfrac{1}{2006} ) }{3010}$ = $\dfrac{\dfrac{1}{1004} + \dfrac{1}{1005} + … + \dfrac{1}{2006} )}{1505}$ ($2$)

    Từ ($1$) , ($2$) ⇒

    $\dfrac{A}{B}$ = $\dfrac{\dfrac{1}{1004} + \dfrac{1}{1005} + … + \dfrac{1}{2006}}{\dfrac{\dfrac{1}{1004} + \dfrac{1}{1005} + … + \dfrac{1}{2006} )}{1505}}$ = $1505$ ∈ $Z$

    ⇒ $\dfrac{A}{B}$ ∈ $Z$ ( đpcm )

     

    Bình luận

Viết một bình luận