Cho A= 1/2 + 1/3 + 1/4 + …. + 1/100 + 1/101 B= 1/100.1 + 1/99.2 + 1/98.3 + …. + 1/52.49 + 1/51.50

Cho A= 1/2 + 1/3 + 1/4 + …. + 1/100 + 1/101
B= 1/100.1 + 1/99.2 + 1/98.3 + …. + 1/52.49 + 1/51.50

0 bình luận về “Cho A= 1/2 + 1/3 + 1/4 + …. + 1/100 + 1/101 B= 1/100.1 + 1/99.2 + 1/98.3 + …. + 1/52.49 + 1/51.50”

  1. Ta có : 

    A =  12 + 13  + 14  + ….. + 1100  + 1101

    = 1100 + 1101 + ( 12 + 199) + ( 13 + 198 )+ …. +( 152 + 149) + ( 151 + 150)

    = 1100 + 1101 + 10199.2 + 10198.3+ …. + 10152.49  + 10151.50

    => 101B = 101100 + 10199.2 + 10198.3+ …. + 10152.49  + 10151.50

    B = 1100.1 + 199.2 + 198.3+ …. + 152.49  + 151.50

    => 101B =1 +  1100+ 10199.2 + 10198.3+ …. + 10152.49  + 10151.50

    = (1101 – 1) + ( 1100  1100) + [(10199.2 + 10198.3+ …. + 10152.49  + 10151.50) – (10199.2 + 10198.3+ …. + 10152.49  + 10151.50)]

    = 

     

    Bình luận
  2. Đáp án:

    Ta có : 

    A =  $\dfrac{1}{2}$ + $\dfrac{1}{3}$  + $\dfrac{1}{4}$  + ….. + $\dfrac{1}{100}$  + $\dfrac{1}{101}$

    = $\dfrac{1}{100}$ + $\dfrac{1}{101}$ + ( $\dfrac{1}{2}$ + $\dfrac{1}{99}$) + ( $\dfrac{1}{3}$ + $\dfrac{1}{98}$ )+ …. +( $\dfrac{1}{52}$ + $\dfrac{1}{49}$) + ( $\dfrac{1}{51}$ + $\dfrac{1}{50}$)

    = $\dfrac{1}{100}$ + $\dfrac{1}{101}$ + $\dfrac{101}{99.2}$ + $\dfrac{101}{98.3}$+ …. + $\dfrac{101}{52.49}$  + $\dfrac{101}{51.50}$

    => 101B = $\dfrac{101}{100}$ + $\dfrac{101}{99.2}$ + $\dfrac{101}{98.3}$+ …. + $\dfrac{101}{52.49}$  + $\dfrac{101}{51.50}$

    B = $\dfrac{1}{100.1}$ + $\dfrac{1}{99.2}$ + $\dfrac{1}{98.3}$+ …. + $\dfrac{1}{52.49}$  + $\dfrac{1}{51.50}$

    => 101B =1 +  $\dfrac{1}{100}$+ $\dfrac{101}{99.2}$ + $\dfrac{101}{98.3}$+ …. + $\dfrac{101}{52.49}$  + $\dfrac{101}{51.50}$

    Ta có : 

    A – 101B = ($\dfrac{1}{100}$ + $\dfrac{1}{101}$ + $\dfrac{101}{99.2}$ + $\dfrac{101}{98.3}$+ …. + $\dfrac{101}{52.49}$  + $\dfrac{101}{51.50}$) – ( 1 +  $\dfrac{1}{100}$+ $\dfrac{101}{99.2}$ + $\dfrac{101}{98.3}$+ …. + $\dfrac{101}{52.49}$  + $\dfrac{101}{51.50}$)

    = ($\dfrac{1}{101}$ – 1) + ( $\dfrac{1}{100}$ – $\dfrac{1}{100}$) + [($\dfrac{101}{99.2}$ + $\dfrac{101}{98.3}$+ …. + $\dfrac{101}{52.49}$  + $\dfrac{101}{51.50}$) – ($\dfrac{101}{99.2}$ + $\dfrac{101}{98.3}$+ …. + $\dfrac{101}{52.49}$  + $\dfrac{101}{51.50}$)]

    = $\dfrac{-100}{101}$

     

    Giải thích các bước giải:

     

    Bình luận

Viết một bình luận