Cho A= 1/2 + 1/3 + 1/4 + …. + 1/100 + 1/101 B= 1/100.1 + 1/99.2 + 1/98.3 + …. + 1/52.49 + 1/51.50 Hỏi A – 101 .B

Cho A= 1/2 + 1/3 + 1/4 + …. + 1/100 + 1/101
B= 1/100.1 + 1/99.2 + 1/98.3 + …. + 1/52.49 + 1/51.50
Hỏi A – 101 .B

0 bình luận về “Cho A= 1/2 + 1/3 + 1/4 + …. + 1/100 + 1/101 B= 1/100.1 + 1/99.2 + 1/98.3 + …. + 1/52.49 + 1/51.50 Hỏi A – 101 .B”

  1. Nhìn hình chứ latex lỗi

    Ta có : 

    `A =  1/2 + 1/3  + 1/4  + ….. + 1/100  + 1/101`

    `= 1/100 + 1/101 + ( 1/2 + 1/99) + ( 1/3 + 1/98 )+ …. +( 1/52 + 1/49) + ( 1/51 + 1/50)`

    `= 1/100 + 1/101 + 101/( 99.2) + 101/( 98.3 )+ …. + 101/( 52.49 )  + 101/( 51.50 )`

    `⇒ 101B = 101/100 + 101/( 99.2 ) + 101/( 98.3 )+ …. + 101/( 52.49 )  + 101/( 51.50 )`

    `B = 1/( 100.1 ) + 1/( 99.2 ) + 1/( 98.3 )+ …. + 1/( 52.49 )  + 1/( 51.50 )`

    `⇒ 101B =1 +  1/100101/( 99.2 ) + 101/( 98.3 )+ …. + 101/( 52.49 )  + 101/( 51.50 )`

    Ta có : 

    `A – 101B = (1/100 + 1/101 + 101/( 99.2 ) + 101/( 98.3 )+ …. + 101/( 52.49 )  + 101/( 51.50) – ( 1 +  1/100101/( 99.2 ) + 101/( 98.3 )+ …. + 101/( 52.49 )  + 101/( 51.50)`

    `= ( 1/101 – 1) + ( 1/100 – 1/100) + [(101/( 99.2 ) + 101/( 98.3 )+ …. + 101/( 52.49 )  + 101/( 51.50) – (101/( 99.2 ) + 101/( 98.3 )+ …. + 101/( 52.49)  + 101/( 51.50)]`

    `= 100/101`

     

    Bình luận
  2. Đáp án:

    Ta có : 

    A =  $\dfrac{1}{2}$ + $\dfrac{1}{3}$  + $\dfrac{1}{4}$  + ….. + $\dfrac{1}{100}$  + $\dfrac{1}{101}$

    = $\dfrac{1}{100}$ + $\dfrac{1}{101}$ + ( $\dfrac{1}{2}$ + $\dfrac{1}{99}$) + ( $\dfrac{1}{3}$ + $\dfrac{1}{98}$ )+ …. +( $\dfrac{1}{52}$ + $\dfrac{1}{49}$) + ( $\dfrac{1}{51}$ + $\dfrac{1}{50}$)

    = $\dfrac{1}{100}$ + $\dfrac{1}{101}$ + $\dfrac{101}{99.2}$ + $\dfrac{101}{98.3}$+ …. + $\dfrac{101}{52.49}$  + $\dfrac{101}{51.50}$

    => 101B = $\dfrac{101}{100}$ + $\dfrac{101}{99.2}$ + $\dfrac{101}{98.3}$+ …. + $\dfrac{101}{52.49}$  + $\dfrac{101}{51.50}$

    B = $\dfrac{1}{100.1}$ + $\dfrac{1}{99.2}$ + $\dfrac{1}{98.3}$+ …. + $\dfrac{1}{52.49}$  + $\dfrac{1}{51.50}$

    => 101B =1 +  $\dfrac{1}{100}$+ $\dfrac{101}{99.2}$ + $\dfrac{101}{98.3}$+ …. + $\dfrac{101}{52.49}$  + $\dfrac{101}{51.50}$

    Ta có : 

    A – 101B = ($\dfrac{1}{100}$ + $\dfrac{1}{101}$ + $\dfrac{101}{99.2}$ + $\dfrac{101}{98.3}$+ …. + $\dfrac{101}{52.49}$  + $\dfrac{101}{51.50}$) – ( 1 +  $\dfrac{1}{100}$+ $\dfrac{101}{99.2}$ + $\dfrac{101}{98.3}$+ …. + $\dfrac{101}{52.49}$  + $\dfrac{101}{51.50}$)

    = ($\dfrac{1}{101}$ – 1) + ( $\dfrac{1}{100}$ – $\dfrac{1}{100}$) + [($\dfrac{101}{99.2}$ + $\dfrac{101}{98.3}$+ …. + $\dfrac{101}{52.49}$  + $\dfrac{101}{51.50}$) – ($\dfrac{101}{99.2}$ + $\dfrac{101}{98.3}$+ …. + $\dfrac{101}{52.49}$  + $\dfrac{101}{51.50}$)]

    = $\dfrac{-100}{101}$

     

    Giải thích các bước giải:

     

    Bình luận

Viết một bình luận