Cho A = (1/2^2 – 1) . (1/3^2 – 1) . (1/4^2 – 1) … (1/100^2 -1). So sánh A với (-1/2)
Rút gọn A = 2^100 – 2^99 + 2^98 – 2^97 +….+ 2^2 – 2
Rút gọn B = 3^100 – 3^99 + 3^98 – 3^97 +….+ 3^2 – 3 + 1
Giải nhanh giúp mik, mik cần gấp
Cảm ơn
Cho A = (1/2^2 – 1) . (1/3^2 – 1) . (1/4^2 – 1) … (1/100^2 -1). So sánh A với (-1/2)
Rút gọn A = 2^100 – 2^99 + 2^98 – 2^97 +….+ 2^2 – 2
Rút gọn B = 3^100 – 3^99 + 3^98 – 3^97 +….+ 3^2 – 3 + 1
Giải nhanh giúp mik, mik cần gấp
Cảm ơn
Giải thích các bước giải:
`A=(1/2^2-1).(1/3^2-1).(1/4^2-1)…(1/100^2-1)`
`=(-3)/4.(-8)/9.(-15)/16….(-99)/100`
`=-(3/4. 8/9. 15/16 … 99/100)`
`=-((1.3)/(2.2). (2.4)/(3.3).(3.5)/(4.4)…(9.11)/(10.10))`
`=-((1.2.3…9).(3.4.5…11))/((2.3.4…10).(2.3.4…10))`
`=-(1.11)/(10.2)=(-11)/20< (-1)/20=(-1)/2`
.
`A=2^100-2^99+2^98-2^97+…+2^2-2`
`=> 2A=2^101 – 2^100+2^99-2^98+…+2^3-2^2`
`=>2A + A=2^101-2`
`=>3A=2^101-2`
`=>A=(3^201-2)/3`
.
`B=3^100-3^99+3^98-3^97+…+3^2-3+1`
`=>3B = 3^101-3^100+3^99-3^98+…+3^3-3^2+3`
`=>3B+B=3^101+1`
`=>4B=3^101+1`
`=>B=(3^101+1)/4`
Đáp án:
Quốc Đẹp Trai
Giải thích các bước giải:
A=A=$\frac{1}{2^{2}-1}$ .$\frac{1}{3^{2}-1}$.$\frac{1}{4^{2}-1}$….$\frac{1}{100^{2}-1}$
A=$\frac{1}{8}$. $\frac{1}{15}$.$\frac{1}{24}$….$\frac{1}{9999}$
A=$\frac{1}{2.4}$.$\frac{1}{3.5}$.$\frac{1}{4.6}$.$\frac{1}{99.101}$
A=$\frac{1}{2}$ .($\frac{1}{1}$- $\frac{1}{3}$) .$\frac{1}{2}$ .($\frac{1}{2}$- $\frac{1}{4}$) …..$\frac{1}{2}$ .($\frac{1}{99}$- $\frac{1}{101}$)
Do A>0 =>A>$\frac{-1}{2}$
1)A=2^100 – 2^99 + 2^98 – 2^97 +….+ 2^2 – 2
=>2A=2^101 – 2^100 + 2^99 – 2^98 +….+ 2^3 – 2^2
=>3A=(2^101 – 2^100 + 2^99 – 2^98 +….+ 2^3 – 2^2)+(2^100 – 2^99 + 2^98 – 2^97 +….+ 2^2 – 2)
3A=2^101-2
=>A=$\frac{2^{101-2}}{3}$
2) B = 3^100 – 3^99 + 3^98 – 3^97 +….+ 3^2 – 3 + 1
=>3B= 3(3^100 – 3^99 + 3^98 – 3^97 +….+ 3^2 – 3 + 1)
3B= 3^101 – 3^100 + 3^99 – 3^98 +….+ 3^3 – 3^2 +3
=>3B+B=4B=(3^101 – 3^100 + 3^99 – 3^98 +….+ 3^3 – 3^2 +3)+( 3^100 – 3^99 + 3^98 – 3^97 +….+ 3^2 – 3 + 1)
4B=3^101-1
=>B=$\frac{3^{101}-1}{4}$