Cho A = (1/2^2 – 1) . (1/3^2 – 1) . (1/4^2 – 1) … (1/100^2 -1). So sánh A với (-1/2) Rút gọn A = 2^100 – 2^99 + 2^98 – 2^97 +….+ 2^2 – 2 Rút gọn B

Cho A = (1/2^2 – 1) . (1/3^2 – 1) . (1/4^2 – 1) … (1/100^2 -1). So sánh A với (-1/2)
Rút gọn A = 2^100 – 2^99 + 2^98 – 2^97 +….+ 2^2 – 2
Rút gọn B = 3^100 – 3^99 + 3^98 – 3^97 +….+ 3^2 – 3 + 1
Giải nhanh giúp mik, mik cần gấp
Cảm ơn

0 bình luận về “Cho A = (1/2^2 – 1) . (1/3^2 – 1) . (1/4^2 – 1) … (1/100^2 -1). So sánh A với (-1/2) Rút gọn A = 2^100 – 2^99 + 2^98 – 2^97 +….+ 2^2 – 2 Rút gọn B”

  1. Giải thích các bước giải:

    `A=(1/2^2-1).(1/3^2-1).(1/4^2-1)…(1/100^2-1)`

    `=(-3)/4.(-8)/9.(-15)/16….(-99)/100`

    `=-(3/4. 8/9. 15/16 … 99/100)`

    `=-((1.3)/(2.2). (2.4)/(3.3).(3.5)/(4.4)…(9.11)/(10.10))`

    `=-((1.2.3…9).(3.4.5…11))/((2.3.4…10).(2.3.4…10))`

    `=-(1.11)/(10.2)=(-11)/20< (-1)/20=(-1)/2`

    .

    `A=2^100-2^99+2^98-2^97+…+2^2-2`

    `=> 2A=2^101 – 2^100+2^99-2^98+…+2^3-2^2`

    `=>2A + A=2^101-2`

    `=>3A=2^101-2`

    `=>A=(3^201-2)/3`

    .

    `B=3^100-3^99+3^98-3^97+…+3^2-3+1`

    `=>3B = 3^101-3^100+3^99-3^98+…+3^3-3^2+3`

    `=>3B+B=3^101+1`

    `=>4B=3^101+1`

    `=>B=(3^101+1)/4`

    Bình luận
  2. Đáp án:

    Quốc Đẹp Trai

    Giải thích các bước giải:

     A=A=$\frac{1}{2^{2}-1}$ .$\frac{1}{3^{2}-1}$.$\frac{1}{4^{2}-1}$….$\frac{1}{100^{2}-1}$

    A=$\frac{1}{8}$. $\frac{1}{15}$.$\frac{1}{24}$….$\frac{1}{9999}$

    A=$\frac{1}{2.4}$.$\frac{1}{3.5}$.$\frac{1}{4.6}$.$\frac{1}{99.101}$

    A=$\frac{1}{2}$ .($\frac{1}{1}$- $\frac{1}{3}$) .$\frac{1}{2}$ .($\frac{1}{2}$- $\frac{1}{4}$) …..$\frac{1}{2}$ .($\frac{1}{99}$- $\frac{1}{101}$)

    Do A>0 =>A>$\frac{-1}{2}$ 

    1)A=2^100 – 2^99 + 2^98 – 2^97 +….+ 2^2 – 2

    =>2A=2^101 – 2^100 + 2^99 – 2^98 +….+ 2^3 – 2^2

    =>3A=(2^101 – 2^100 + 2^99 – 2^98 +….+ 2^3 – 2^2)+(2^100 – 2^99 + 2^98 – 2^97 +….+ 2^2 – 2)

    3A=2^101-2

    =>A=$\frac{2^{101-2}}{3}$ 

    2) B = 3^100 – 3^99 + 3^98 – 3^97 +….+ 3^2 – 3 + 1

    =>3B= 3(3^100 – 3^99 + 3^98 – 3^97 +….+ 3^2 – 3 + 1)

    3B= 3^101 – 3^100 + 3^99 – 3^98 +….+ 3^3 – 3^2 +3

    =>3B+B=4B=(3^101 – 3^100 + 3^99 – 3^98 +….+ 3^3 – 3^2 +3)+( 3^100 – 3^99 + 3^98 – 3^97 +….+ 3^2 – 3 + 1)

    4B=3^101-1

    =>B=$\frac{3^{101}-1}{4}$ 

    Bình luận

Viết một bình luận