Cho `A + 1 – 3/4 + (3/4)^2 – (3/4)^3 + (3/4)^4 – (3/4)^5 – … – (3/4)^(2009) + (3/4)^2010
Chứng tỏ `A` không phải là số nguyên
Cho `A + 1 – 3/4 + (3/4)^2 – (3/4)^3 + (3/4)^4 – (3/4)^5 – … – (3/4)^(2009) + (3/4)^2010
Chứng tỏ `A` không phải là số nguyên
`A=1-3/4+(3/4)^2-(3/4)^3+….-(3/4)^(2009)+(3/4)^(2010)`
`-> A . 3/4=3/4-(3/4)^2+(3/4)^3+…-(3/4)^(2010)+(3/4)^(2011)`
`-> 3/4 A+A=(3/4-(3/4)^2+(3/4)^3+…-(3/4)^(2010)+(3/4)^(2011))+(1-3/4+(3/4)^2-(3/4)^3+….-(3/4)^(2009)+(3/4)^(2010) )`
`->7/4A=(3/4)^(2011) + 1`
`-> 7A=4. (3/4)^(2011) + 4`
`-> A = [4. (3/4)^(2011) + 4]/7`
`-> A` không phải là số nguyên `(ĐPCM)`
Đáp án:
`đpcm`
Giải thích các bước giải:
`A=1-3/4+(3/4)^2-(3/4)^3+….-(3/4)^(2009)+(3/4)^(2010) `
`=> A . 3/4=3/4-(3/4)^2+(3/4)^3+…-(3/4)^(2010)+(3/4)^(2011)`
`=> 3/4 A+A=(3/4-(3/4)^2+(3/4)^3+…-(3/4)^(2010)+(3/4)^(2011))+(1-3/4+(3/4)^2-(3/4)^3+….-(3/4)^(2009)+(3/4)^(2010) )`
`=>7/4A=(3/4)^(2011) + 1`
`=> 7A=4. (3/4)^(2011) + 4`
`=>` $\text{A không phải là số nguyên}$
`=> đpcm`