Cho `A + 1 – 3/4 + (3/4)^2 – (3/4)^3 + (3/4)^4 – (3/4)^5 – … – (3/4)^(2009) + (3/4)^2010 Chứng tỏ `A` không phải là số nguyên

Cho `A + 1 – 3/4 + (3/4)^2 – (3/4)^3 + (3/4)^4 – (3/4)^5 – … – (3/4)^(2009) + (3/4)^2010
Chứng tỏ `A` không phải là số nguyên

0 bình luận về “Cho `A + 1 – 3/4 + (3/4)^2 – (3/4)^3 + (3/4)^4 – (3/4)^5 – … – (3/4)^(2009) + (3/4)^2010 Chứng tỏ `A` không phải là số nguyên”

  1. `A=1-3/4+(3/4)^2-(3/4)^3+….-(3/4)^(2009)+(3/4)^(2010)`

    `-> A . 3/4=3/4-(3/4)^2+(3/4)^3+…-(3/4)^(2010)+(3/4)^(2011)`

    `-> 3/4 A+A=(3/4-(3/4)^2+(3/4)^3+…-(3/4)^(2010)+(3/4)^(2011))+(1-3/4+(3/4)^2-(3/4)^3+….-(3/4)^(2009)+(3/4)^(2010) )`

    `->7/4A=(3/4)^(2011) + 1`

    `-> 7A=4. (3/4)^(2011) + 4`

    `-> A = [4. (3/4)^(2011) + 4]/7`

    `-> A` không phải là số nguyên `(ĐPCM)`

    Bình luận
  2. Đáp án:

     `đpcm`

    Giải thích các bước giải:

    `A=1-3/4+(3/4)^2-(3/4)^3+….-(3/4)^(2009)+(3/4)^(2010) `

    `=> A . 3/4=3/4-(3/4)^2+(3/4)^3+…-(3/4)^(2010)+(3/4)^(2011)`

    `=> 3/4 A+A=(3/4-(3/4)^2+(3/4)^3+…-(3/4)^(2010)+(3/4)^(2011))+(1-3/4+(3/4)^2-(3/4)^3+….-(3/4)^(2009)+(3/4)^(2010) )`

    `=>7/4A=(3/4)^(2011) + 1`

    `=> 7A=4. (3/4)^(2011) + 4`

    `=>` $\text{A không phải là số nguyên}$

    `=> đpcm` 

     

    Bình luận

Viết một bình luận