0 bình luận về “cho A=1/4^2+1/6^2+1/8^2+1/10^2+…+1/160^2.Cmr1/8<A<3/16”

  1. Đáp án:

    $\begin{array}{l}
    A = \dfrac{1}{{{4^2}}} + \dfrac{1}{{{6^2}}} + \dfrac{1}{{{8^2}}} + \dfrac{1}{{{{10}^2}}} + .. + \dfrac{1}{{{{160}^2}}}\\
     = \dfrac{1}{{{2^2}}}\left( {\dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + \dfrac{1}{{{4^2}}} + … + \dfrac{1}{{{{80}^2}}}} \right)\\
     = \dfrac{1}{{{2^2}}}.B\\
    Do:B = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + \dfrac{1}{{{4^2}}} + … + \dfrac{1}{{{{80}^2}}}\\
     > \dfrac{1}{{{2^2}}} + \left( {\dfrac{1}{{3.4}} + \dfrac{1}{{4.5}} + … + \dfrac{1}{{80.81}}} \right)\\
     > \dfrac{1}{4} + \left( {\dfrac{1}{3} – \dfrac{1}{4} + \dfrac{1}{4} – \dfrac{1}{5} + … + \dfrac{1}{{80}} – \dfrac{1}{{81}}} \right)\\
     > \dfrac{1}{4} + \left( {\dfrac{1}{3} – \dfrac{1}{{81}}} \right)\\
     > \dfrac{1}{4} + \dfrac{{26}}{{81}} > \dfrac{1}{2}\\
     \Leftrightarrow B > \dfrac{1}{2}\\
     \Leftrightarrow A > \dfrac{1}{{{2^2}}}.\dfrac{1}{2}\\
     \Leftrightarrow A > \dfrac{1}{8}\\
    Lai\,co:\\
    B = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + \dfrac{1}{{{4^2}}} + … + \dfrac{1}{{{{80}^2}}}\\
     < \dfrac{1}{4} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + … + \dfrac{1}{{79.80}}\\
     \Leftrightarrow B < \dfrac{1}{4} + \left( {\dfrac{1}{2} – \dfrac{1}{3} + \dfrac{1}{3} – \dfrac{1}{4} + … + \dfrac{1}{{79}} – \dfrac{1}{{80}}} \right)\\
     \Leftrightarrow B < \dfrac{1}{4} + \dfrac{1}{2} – \dfrac{1}{{80}}\\
     \Leftrightarrow B < \dfrac{3}{4} – \dfrac{1}{{80}} < \dfrac{3}{4}\\
     \Leftrightarrow A < \dfrac{1}{{{2^2}}}.B\\
     \Leftrightarrow A < \dfrac{1}{4}.\dfrac{3}{4}\\
     \Leftrightarrow A < \dfrac{3}{{16}}\\
    Vậy\,\dfrac{1}{8} < A < \dfrac{3}{{16}}
    \end{array}$

    Bình luận

Viết một bình luận