cho A=/x+1/+/4-6x/+2x-1 a, rút gọn biểu thức A b, tìm x sao cho A=3 07/07/2021 Bởi Delilah cho A=/x+1/+/4-6x/+2x-1 a, rút gọn biểu thức A b, tìm x sao cho A=3
Đáp án: a) \(\left[ \begin{array}{l}A = – 3x + 4\\A = 7x – 6\end{array} \right.\) b) \(\left[ \begin{array}{l}x = \dfrac{1}{3}\\x = \dfrac{9}{7}\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}a)A = \left| {x + 1} \right| + \left| {4 – 6x} \right| + 2x – 1\\ \to \left[ \begin{array}{l}A = x + 1 + 4 – 6x + 2x – 1\left( {DK:\dfrac{2}{3} \ge x \ge – 1} \right)\\A = – x – 1 – 4 + 6x + 2x – 1\left( {DK:\left[ \begin{array}{l}x > \dfrac{2}{3}\\x < – 1\end{array} \right.} \right)\end{array} \right.\\ \to \left[ \begin{array}{l}A = – 3x + 4\\A = 7x – 6\end{array} \right.\\b)A = 3\\ \to \left[ \begin{array}{l} – 3x + 4 = 3\\7x – 6 = 3\end{array} \right.\\ \to \left[ \begin{array}{l}x = \dfrac{1}{3}\left( {TM} \right)\\x = \dfrac{9}{7}\left( {TM} \right)\end{array} \right.\end{array}\) Bình luận
Đáp án:
a) \(\left[ \begin{array}{l}
A = – 3x + 4\\
A = 7x – 6
\end{array} \right.\)
b) \(\left[ \begin{array}{l}
x = \dfrac{1}{3}\\
x = \dfrac{9}{7}
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
a)A = \left| {x + 1} \right| + \left| {4 – 6x} \right| + 2x – 1\\
\to \left[ \begin{array}{l}
A = x + 1 + 4 – 6x + 2x – 1\left( {DK:\dfrac{2}{3} \ge x \ge – 1} \right)\\
A = – x – 1 – 4 + 6x + 2x – 1\left( {DK:\left[ \begin{array}{l}
x > \dfrac{2}{3}\\
x < – 1
\end{array} \right.} \right)
\end{array} \right.\\
\to \left[ \begin{array}{l}
A = – 3x + 4\\
A = 7x – 6
\end{array} \right.\\
b)A = 3\\
\to \left[ \begin{array}{l}
– 3x + 4 = 3\\
7x – 6 = 3
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{1}{3}\left( {TM} \right)\\
x = \dfrac{9}{7}\left( {TM} \right)
\end{array} \right.
\end{array}\)