cho A=2^100-2^99-2^98-…-2^2-2 chứng minh rằng A là số nguyên tố 15/11/2021 Bởi Ariana cho A=2^100-2^99-2^98-…-2^2-2 chứng minh rằng A là số nguyên tố
A = 2^100 – 2^99 – 2^98 – …. – 2^2 – 2 A . 2 = 2^101 – 2^100 – 2^99 – … – 2^3 – 2^2 A . 2 – A = ( 2^101 – 2^100 – 2^99 – … – 2^3 – 2^2 ) – ( 2^100 – 2^99 – 2^98 – …. – 2^2 – 2 ) A = 2 ^101 – 2^100 – 2^99 – … – 2^3 – 2^2 – 2^100 + 2^99 + 2^98 + …. + 2^2 + 2 A = 2^101 – 2^100 – 2^100 + 2 A = 2^101 – ( 2^100 + 2^100 ) + 2 A = 2^101 – ( 2^100 . 2 ) + 2 A = 2^101 – 2^101 + 2 A = 2 ( số nguyên tố ) ( Điều phải chứng minh ) Bình luận
– Ta có : `A=2^100-2^99-2^98-2^97-…-2^2-2` `->A=2^100-(2^99+2^98+2^97+…+2^2+2)` – Đặt `B=2^99+2^98+2^97+…+2^2+2` `->2B=2^99 .2+2^98 .2+2^97 .2+2^2 .2+2.2` `->2B=2^100+2^99+2^98+…+2^3+2^2` `->2B-B=(2^100+2^99+2^98+…+2^3+2^2)-(2^99+2^98+2^97+…+2^2+2)` `->B=2^100-2` – Ta lại có : `A=2^100-B` `->A=2^100-(2^100-2)` `->A=2^100-2^100+2` `->A=2` `->A` là số nguyên tố `(đpcm)` Bình luận
A = 2^100 – 2^99 – 2^98 – …. – 2^2 – 2
A . 2 = 2^101 – 2^100 – 2^99 – … – 2^3 – 2^2
A . 2 – A = ( 2^101 – 2^100 – 2^99 – … – 2^3 – 2^2 ) – ( 2^100 – 2^99 – 2^98 – …. – 2^2 – 2 )
A = 2 ^101 – 2^100 – 2^99 – … – 2^3 – 2^2 – 2^100 + 2^99 + 2^98 + …. + 2^2 + 2
A = 2^101 – 2^100 – 2^100 + 2
A = 2^101 – ( 2^100 + 2^100 ) + 2
A = 2^101 – ( 2^100 . 2 ) + 2
A = 2^101 – 2^101 + 2
A = 2 ( số nguyên tố ) ( Điều phải chứng minh )
– Ta có :
`A=2^100-2^99-2^98-2^97-…-2^2-2`
`->A=2^100-(2^99+2^98+2^97+…+2^2+2)`
– Đặt `B=2^99+2^98+2^97+…+2^2+2`
`->2B=2^99 .2+2^98 .2+2^97 .2+2^2 .2+2.2`
`->2B=2^100+2^99+2^98+…+2^3+2^2`
`->2B-B=(2^100+2^99+2^98+…+2^3+2^2)-(2^99+2^98+2^97+…+2^2+2)`
`->B=2^100-2`
– Ta lại có :
`A=2^100-B`
`->A=2^100-(2^100-2)`
`->A=2^100-2^100+2`
`->A=2`
`->A` là số nguyên tố `(đpcm)`