Cho A = 2/3^2 + 2/5^2 + 2/7^2 +…+ 2/2017^2. Chứng minh rằng A < 504/1009 20/08/2021 Bởi Alexandra Cho A = 2/3^2 + 2/5^2 + 2/7^2 +…+ 2/2017^2. Chứng minh rằng A < 504/1009
`A = 2/3^2 + 2/5^2 + 2/7^2 +…+ 2/2017^2<504/1009 ` `A=2/(3.3)+2/(5.5)+2/(7.7)+…+2/(2017.2017)<504/1009 ` `A=2/(3.5)+2/(5.7)+2/(7.9)+…+2/(2017.2019)<504/1009 ` `A=1/3-1/5+1/5-1/7+1/7-1/9+…+1/2017-1/2019<504/1009 ` `A=1/3-1/2019<504/1009 ` `A=224/673<504/1009 ` Vậy `A<504/1009` Bình luận
`A = 2/3^2 + 2/5^2 + 2/7^2 +…+ 2/2017^2<504/1009` `A=2/(3.3)+2/(5.5)+2/(7.7)+…+2/(2017.2017)<504/1009` `A=2/(3.5)+2/(5.7)+2/(7.9)+…+2/(2017.2019)<504/1009` `A=1/3-1/5+1/5-1/7+1/7-1/9+…+1/2017-1/2019<504/1009` `A=1/3-1/2019<504/1009` `A=224/673<504/1009` `Vậy A<504/1009` Bình luận
`A = 2/3^2 + 2/5^2 + 2/7^2 +…+ 2/2017^2<504/1009 `
`A=2/(3.3)+2/(5.5)+2/(7.7)+…+2/(2017.2017)<504/1009 `
`A=2/(3.5)+2/(5.7)+2/(7.9)+…+2/(2017.2019)<504/1009 `
`A=1/3-1/5+1/5-1/7+1/7-1/9+…+1/2017-1/2019<504/1009 `
`A=1/3-1/2019<504/1009 `
`A=224/673<504/1009 `
Vậy `A<504/1009`
`A = 2/3^2 + 2/5^2 + 2/7^2 +…+ 2/2017^2<504/1009`
`A=2/(3.3)+2/(5.5)+2/(7.7)+…+2/(2017.2017)<504/1009`
`A=2/(3.5)+2/(5.7)+2/(7.9)+…+2/(2017.2019)<504/1009`
`A=1/3-1/5+1/5-1/7+1/7-1/9+…+1/2017-1/2019<504/1009`
`A=1/3-1/2019<504/1009`
`A=224/673<504/1009`
`Vậy A<504/1009`