cho a/2b=b/2c=c/2d=d/2a (a;b;c;d>0) tinh A=2013a-2012b/c+d+2013b-2012c/a+d+2013c-2012d/a+b+2013d-2012a/b+c

cho a/2b=b/2c=c/2d=d/2a (a;b;c;d>0)
tinh A=2013a-2012b/c+d+2013b-2012c/a+d+2013c-2012d/a+b+2013d-2012a/b+c
giup mik nha sai cung duoc miem la co bai

0 bình luận về “cho a/2b=b/2c=c/2d=d/2a (a;b;c;d>0) tinh A=2013a-2012b/c+d+2013b-2012c/a+d+2013c-2012d/a+b+2013d-2012a/b+c”

  1. Ta có

    $\dfrac{a}{2b} . \dfrac{b}{2c} . \dfrac{c}{2d} . \dfrac{d}{2a} = \left( \dfrac{a}{2b} \right)^4$

    $\Leftrightarrow \dfrac{1}{2.2.2.2} = \left( \dfrac{a}{2b} \right)^4$

    $\Leftrightarrow \dfrac{1}{2} = \dfrac{a}{2b}$

    $\Leftrightarrow 1 = \dfrac{a}{b}$

    $\Leftrightarrow a = b$

    CMTT ta suy ra $a = b = c = d$. 

    Vậy ta tính

    $A = 2013a – 2012 . \dfrac{b}{c+d} + 2013b – 2012 . \dfrac{c}{a+d} + 2013c – 2012.\dfrac{d}{a+b} + 2013d – 2012 . \dfrac{a}{b+c}$

    $= 2013 a + 2013b + 2013c + 2013d – 2012 \left( \dfrac{b}{c+d} + \dfrac{c}{a+d} + \dfrac{d}{a+b} + \dfrac{a}{b+c}\right)$

    Do $a = b = c = d$ nên

    $\dfrac{b}{c+d} = \dfrac{a}{b+c} = \dfrac{c}{a+d} = \dfrac{d}{a+b} = \dfrac{1}{2}$

    Thay vào ta có

    $A = 2013.4 – 2012.\dfrac{1}{2} . 4$

    $= 2013.4 – 1006.4$

    $= 4(2013-1006)$

    $= 4.1007 = 4028$

    Vậy $A = 4028$.

    Bình luận
  2. Ta có

    a2b.b2c.c2d.d2a=(a2b)4

    ⇔12.2.2.2=(a2b)4

    ⇔12=a2b

    ⇔1=ab

    ⇔a=b

    CMTT ta suy ra a=b=c=d

    Vậy ta tính

    A=2013a−2012.bc+d+2013b−2012.ca+d+2013c−2012.da+b+2013d−2012.ab+c

    =2013a+2013b+2013c+2013d−2012(bc+d+ca+d+da+b+ab+c)

    Do a=b=c=d nên

    bc+d=ab+c=ca+d=da+b=12

    Thay vào ta có

    A=2013.4−2012.12.4

    =2013.4−1006.4

    =4(2013−1006)

    =4.1007=4028

    Vậy A=4028.

    Bình luận

Viết một bình luận