cho A = 2n+5/3n+1 a) tìm để A có giá trị lớn nhất ; b) tìm n để A có giá số nguyên ; tìn n để phân số A tối giản

cho A = 2n+5/3n+1 a) tìm để A có giá trị lớn nhất ; b) tìm n để A có giá số nguyên ; tìn n để phân số A tối giản

0 bình luận về “cho A = 2n+5/3n+1 a) tìm để A có giá trị lớn nhất ; b) tìm n để A có giá số nguyên ; tìn n để phân số A tối giản”

  1. Đáp án:

     

    Giải thích các bước giải:

     ta có:

    A=$\frac{2n+5}{3n+1}$

    để A có gt nguyên

    ⇔(2n+5):(3n+1)

    ⇔3(2n+5):(3n+1)

    ⇔6n+15:3n+1

    ta lại có:

    3n+1:3n+1

    ⇔2(3n+1):3n+1

    ⇔6n+2:3n+1

    ⇔6n+15-6n-1:3n+1

    ⇔13:3n+1

    ⇔3n+1=11;1;-11;-1

    ⇔3n=10;0;-12;-2 

    ⇔n=10/3;0;-4;-2/3

    Bình luận

Viết một bình luận