cho a=5+5^2+5^3+5^4+…+5^120 . chứng minh rằng a chia hết cho 186 18/08/2021 Bởi Skylar cho a=5+5^2+5^3+5^4+…+5^120 . chứng minh rằng a chia hết cho 186
$A=5+5^2+5^3+5^4+…+5^{120}$ $=(5+5^2)+(5^3+5^4)+…+(5^{119}+5^{120})$ $=5.(1+5)+5^3.(1+5)+…+5^{119}.(1+5)$ $=6.(5+5^3+…+5^{119})$ ⋮ $6$ $⇒A$ ⋮ $6$ $A=5+5^2+5^3+5^4+…+5^{120}$ $=(5+5^2+5^3)+…+(5^{118}+5^{119}+5^{200})$ $=5.(1+5+5^2)+…+5^{118}.(1+5+5^2)$ $=5.31+…+5^{118}.31$ $=31.(5+…+5^{118})$ ⋮ $31$ $⇒A$ ⋮ $31$ Mà $(6;31)=1$ $⇒A$ ⋮ $186$. Bình luận
Ta phân tích : `186=31.6` Vì `ƯCLN(31;6) ⇒`Ta cần chứng minh `A⋮6;31` `A=5+5^2+5^3+5^4+…+5^120` `⇒A=(5+5^2)+(5^3+5^4)+…+(5^119+5^120)` `⇒A=5(1+5)+5^3(1+5)+…+5^119(1+5)` `⇒A=6.5+6.5^3+…+6.5^119` `⇒A=6(5+5^3+…+5^119)⋮6` `A=5+5^2+5^3+5^4+…+5^120` `⇒A=(5+5^2+5^3)+(5^4+5^5+5^6)+…+(5^118+5^119+5^120)` `⇒A=5(1+5+5^2)+5^4(1+5+5^2)+…+5^118(1+5+5^2)` `⇒A=31.5+31.5^4+…+31.5^118` `⇒A=6(5+5^4+…+5^118)⋮31` `⇒A⋮186` `(đpcm)` Bình luận
$A=5+5^2+5^3+5^4+…+5^{120}$
$=(5+5^2)+(5^3+5^4)+…+(5^{119}+5^{120})$
$=5.(1+5)+5^3.(1+5)+…+5^{119}.(1+5)$
$=6.(5+5^3+…+5^{119})$ ⋮ $6$
$⇒A$ ⋮ $6$
$A=5+5^2+5^3+5^4+…+5^{120}$
$=(5+5^2+5^3)+…+(5^{118}+5^{119}+5^{200})$
$=5.(1+5+5^2)+…+5^{118}.(1+5+5^2)$
$=5.31+…+5^{118}.31$
$=31.(5+…+5^{118})$ ⋮ $31$
$⇒A$ ⋮ $31$
Mà $(6;31)=1$
$⇒A$ ⋮ $186$.
Ta phân tích : `186=31.6`
Vì `ƯCLN(31;6) ⇒`Ta cần chứng minh `A⋮6;31`
`A=5+5^2+5^3+5^4+…+5^120`
`⇒A=(5+5^2)+(5^3+5^4)+…+(5^119+5^120)`
`⇒A=5(1+5)+5^3(1+5)+…+5^119(1+5)`
`⇒A=6.5+6.5^3+…+6.5^119`
`⇒A=6(5+5^3+…+5^119)⋮6`
`A=5+5^2+5^3+5^4+…+5^120`
`⇒A=(5+5^2+5^3)+(5^4+5^5+5^6)+…+(5^118+5^119+5^120)`
`⇒A=5(1+5+5^2)+5^4(1+5+5^2)+…+5^118(1+5+5^2)`
`⇒A=31.5+31.5^4+…+31.5^118`
`⇒A=6(5+5^4+…+5^118)⋮31`
`⇒A⋮186` `(đpcm)`