cho `:a;b;c>0` `a+b+c=1` tìm `minF=1/(a^2+b^2+c^2)+1/(ab)+1/(bc)+1/(ca)`

By Julia

cho `:a;b;c>0`
`a+b+c=1`
tìm `minF=1/(a^2+b^2+c^2)+1/(ab)+1/(bc)+1/(ca)`

0 bình luận về “cho `:a;b;c>0` `a+b+c=1` tìm `minF=1/(a^2+b^2+c^2)+1/(ab)+1/(bc)+1/(ca)`”

  1. Giải thích các bước giải:

    ĐK: $a,b,c>0$

    Ta có:

    $\begin{array}{l}
    {\left( {a – b} \right)^2} + {\left( {b – c} \right)^2} + {\left( {a – c} \right)^2} \ge 0,\forall a,b,c\\
     \Leftrightarrow {a^2} + {b^2} + {c^2} \ge ab + bc + ac\\
     \Leftrightarrow {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right) \ge 3\left( {ab + bc + ac} \right)\\
     \Leftrightarrow {\left( {a + b + c} \right)^2} \ge 3\left( {ab + bc + ac} \right)\\
     \Leftrightarrow 1 \ge 3\left( {ab + bc + ac} \right)\\
     \Leftrightarrow ab + bc + ac \le \dfrac{1}{3}
    \end{array}$

    Lại có:

    $\begin{array}{l}
    F = \dfrac{1}{{{a^2} + {b^2} + {c^2}}} + \dfrac{1}{{ab}} + \dfrac{1}{{bc}} + \dfrac{1}{{ac}}\\
     = \left( {\dfrac{1}{{{a^2} + {b^2} + {c^2}}} + \dfrac{1}{{3ab}} + \dfrac{1}{{3bc}} + \dfrac{1}{{3ac}}} \right) + \left( {\dfrac{2}{{3ab}} + \dfrac{2}{{3bc}} + \dfrac{2}{{ac}}} \right)\\
     = \left( {\dfrac{{{1^2}}}{{{a^2} + {b^2} + {c^2}}} + \dfrac{{{1^2}}}{{3ab}} + \dfrac{{{1^2}}}{{3bc}} + \dfrac{{{1^2}}}{{3ac}}} \right) + \dfrac{2}{3}\left( {\dfrac{{{1^2}}}{{ab}} + \dfrac{{{1^2}}}{{bc}} + \dfrac{{{1^2}}}{{ac}}} \right)\\
     \ge \dfrac{{{{\left( {1 + 1 + 1 + 1} \right)}^2}}}{{{a^2} + {b^2} + {c^2} + 3\left( {ab + bc + ac} \right)}} + \dfrac{2}{3}.\dfrac{{{{\left( {1 + 1 + 1} \right)}^2}}}{{ab + bc + ac}}\\
    \left( {BDT:Cauchy – Schwarz} \right)\\
     = \dfrac{{16}}{{{{\left( {a + b + c} \right)}^2} + ab + bc + ac}} + \dfrac{2}{3}.\dfrac{9}{{ab + bc + ac}}\\
     = \dfrac{{16}}{{1 + ab + bc + ac}} + \dfrac{6}{{ab + bc + ac}}\\
     \ge \dfrac{{16}}{{1 + \dfrac{1}{3}}} + \dfrac{6}{{\dfrac{1}{3}}}\\
     = 30
    \end{array}$

    Dấu bằng xảy ra

    $\begin{array}{l}
     \Leftrightarrow \left\{ \begin{array}{l}
    a = b = c\\
    a + b + c = 1
    \end{array} \right.\\
     \Leftrightarrow a = b = c = \dfrac{1}{3}
    \end{array}$

    Vậy $MinF = 30 \Leftrightarrow \left( {a;b;c} \right) = \left( {\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}} \right)$

    Trả lời
  2. Áp dụng bất đẳng thức Schwarz có:

    $\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}≥\dfrac{9}{ab+bc+ca}$

    $⇒F≥\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ca}$

    Áp dụng bất đẳng thức Schwarz ta có:

    $\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}≥\dfrac{9}{a^2+b^2+c^2+2(ab+bc+ca)}=\dfrac{9}{(a+b+c)^2}=9$ (do $a+b+c=1$

    Lại có: $ab+bc+ca≤\dfrac{(a+b+c)^2}{3}=\dfrac{1}{3}$ (do $a+b+c=1$)

    $⇒\dfrac{7}{ab+bc+ca}≥7.3=21$

    $⇒F≥\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ca}≥30$

    Dấu $=$ xảy ra $⇔a=b=c=\dfrac{1}{3}$

    Trả lời

Viết một bình luận