Cho `a,b,c > 0` Chứng minh rằng : `P = a^2/(a^2 + (b+c)^2) + b^2/(b^2 + (c+a)^2) + c^2/(c^2 + (a+b)^2) ≥ 3/5` 18/07/2021 Bởi Kennedy Cho `a,b,c > 0` Chứng minh rằng : `P = a^2/(a^2 + (b+c)^2) + b^2/(b^2 + (c+a)^2) + c^2/(c^2 + (a+b)^2) ≥ 3/5`
;-; sai thì góp ý ta có : `2(a^2+b^2)≥(a+b)^2` `⇔1/(2(a^2+b^2))≤1/((a+b)^2)` `P=(a^2)/(a^2+(b+c)^2)+(b^2)/(a^2+(b+c)^2)+(a^2)/(a^2+(b+c)^2)` `⇒P≥(a^2)/(a^2+2(b^2+c^2))+(b^2)/(b^2+2(a^3+c^2))+(c^2)/(c^2+2(a^2+b^2))` `⇔P+3≥(2(a^2+b^2+c^2))/(a^2+2(b^2+c^2))+(2(a^2+b^2+c^2))/(b^2+2(a^3+c^2))+(2(a^2+b^2+c^2))/(c^2+2(a^2+b^2))` `⇔P+3≥2(a^2+b^2+c^2) . 1/(a^2+2(b^2+c^2))+1/(b^2+2(a^3+c^2))+1/(c^2+2(a^2+b^2))` `⇔P+3≥2(a^2+b^2+c^2).(1+1+1)^2/(a^2+2b^2+c^2+b^2+2a^3+c^2+c^2+2a^2+b^2)` `⇔P+3≥2(a^2+b^2+c^2).9/(5(a^2+b^2+c^2))` `⇔P+3≥(18)/5` `⇔P≥(18)/5-3=3/5` `”=”`xẩy ra khi : `a=b=c=1` Bình luận
;-; sai thì góp ý
ta có :
`2(a^2+b^2)≥(a+b)^2`
`⇔1/(2(a^2+b^2))≤1/((a+b)^2)`
`P=(a^2)/(a^2+(b+c)^2)+(b^2)/(a^2+(b+c)^2)+(a^2)/(a^2+(b+c)^2)`
`⇒P≥(a^2)/(a^2+2(b^2+c^2))+(b^2)/(b^2+2(a^3+c^2))+(c^2)/(c^2+2(a^2+b^2))`
`⇔P+3≥(2(a^2+b^2+c^2))/(a^2+2(b^2+c^2))+(2(a^2+b^2+c^2))/(b^2+2(a^3+c^2))+(2(a^2+b^2+c^2))/(c^2+2(a^2+b^2))`
`⇔P+3≥2(a^2+b^2+c^2) . 1/(a^2+2(b^2+c^2))+1/(b^2+2(a^3+c^2))+1/(c^2+2(a^2+b^2))`
`⇔P+3≥2(a^2+b^2+c^2).(1+1+1)^2/(a^2+2b^2+c^2+b^2+2a^3+c^2+c^2+2a^2+b^2)`
`⇔P+3≥2(a^2+b^2+c^2).9/(5(a^2+b^2+c^2))`
`⇔P+3≥(18)/5`
`⇔P≥(18)/5-3=3/5`
`”=”`xẩy ra khi :
`a=b=c=1`