Cho a+b+c = 0
Rút gọn
A = $\frac{a^2}{bc}$ + $\frac{b^2}{ac}$ + $\frac{c^2}{ab}$
B = $\frac{a^2}{a^2-b^2-c^2}$ + $\frac{b^2}{b^2-c^2-a^2}$ + $\frac{c^2}{c^2 – a^2-b^2}$
Cho a+b+c = 0
Rút gọn
A = $\frac{a^2}{bc}$ + $\frac{b^2}{ac}$ + $\frac{c^2}{ab}$
B = $\frac{a^2}{a^2-b^2-c^2}$ + $\frac{b^2}{b^2-c^2-a^2}$ + $\frac{c^2}{c^2 – a^2-b^2}$
Giải thích các bước giải:
Ta có:
$a+b+c=0$
$\to (a+b+c)^3=0$
$\to a^3+b^3+c^3+3(a+b)(b+c)(c+a)=0$
$\to a^3+b^3+c^3+3(-c)(-a)(-b)=0$
$\to a^3+b^3+c^3-3abc=0$
$\to a^3+b^3+c^3=3abc$
$\to \dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}=3$
$\to \dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}=3$
$\to A=3$
Ta có:
$a+b+c=0$
$\to b+c=-a$
$\to (b+c)^2=(-a)^2$
$\to b^2+c^2+2bc=a^2$
$\to a^2-b^2-c^2=2bc$
$\to \dfrac{a^2}{a^2-b^2-c^2}=\dfrac{a^2}{2bc}$
Tương tự
$\dfrac{b^2}{b^2-c^2-a^2}=\dfrac{b^2}{2ca}$
$\dfrac{c^2}{c^2-a^2-b^2}=\dfrac{c^2}{2ab}$
$\to B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2ab}$
$\to B=\dfrac12(\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab})$
$\to B=\dfrac12A$
$\to B=\dfrac32$