Cho `a,b,c > 0` . Tìm Min của : `P = (x + 3z)/(x+y) + (z + 3x)/(y+z) + (4y)/(z+x)` 15/07/2021 Bởi Kylie Cho `a,b,c > 0` . Tìm Min của : `P = (x + 3z)/(x+y) + (z + 3x)/(y+z) + (4y)/(z+x)`
xin hay nhất cố làm có tâm lắm rồi :v ý tưởng : ta có :`3x+2y+3z=(x+y)+(y+z)+2(x+z)` và `3x+2y+3z=2(x+y)+(x+3z)=2(y+z)+(z+3x)=(4y+6(x+z))/2` ta có : `P=(x+3z)/(x+y)+(z+3x)/(y+z)+(4y)/(x+z)` `⇔10+P=((x+3z)/(x+y)+2)+((z+3x)/(y+z)+2)+((4y)/(x+z)+6)` `⇔10+P=(x+3z+2(x+y))/(x+y)+(z+3x+2(y+z))/(y+z)+(4y+6(x+z))/(x+z)` `⇔10+P=(3x+2y+3z)/(x+y)+(3x+2y+3z)/(y+z)+(2(3x+2y+3z))/(x+z)` `⇔10+P=(3x+2y+3z)(1/(x+y)+1/(y+z)+2/(x+z))` `⇔10+P=((x+y)+(y+z)+2(x+z))(1/(x+y)+1/(y+z)+2/(x+z))` theo `bu-nhi-a` `⇔10+P≥(1.1+1.1+√2.√2)^2` `⇔10+P≥16` `⇔P≥6` `”=”`xẩy ra khi : `x=y=z` Bình luận
Đáp án: Giải thích các bước giải: $P=(\dfrac{x+3z}{x+y}+2)+(\dfrac{z+3x}{y+z}+2)+(\dfrac{4y}{z+x}+6)-10$ $P=(\dfrac{3x+2y+3z}{x+y})+(\dfrac{2y+3z+3x}{y+z})+(\dfrac{4y+6z+6x}{z+x})-10$ $P=(3x+2y+3z)(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{2}{x+z})-10$ $P=[(x+y)+(y+z)+2(x+z)](\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{2}{z+x})-10≥(1+1+\sqrt{2}.\sqrt{2})^2-10=6$ Vậy $P_{min}=6$ khi $(x+y)^2=(y+z)^2=(z+x)^2$ hay $x=y=z$ Bình luận
xin hay nhất cố làm có tâm lắm rồi :v
ý tưởng :
ta có :`3x+2y+3z=(x+y)+(y+z)+2(x+z)`
và `3x+2y+3z=2(x+y)+(x+3z)=2(y+z)+(z+3x)=(4y+6(x+z))/2`
ta có :
`P=(x+3z)/(x+y)+(z+3x)/(y+z)+(4y)/(x+z)`
`⇔10+P=((x+3z)/(x+y)+2)+((z+3x)/(y+z)+2)+((4y)/(x+z)+6)`
`⇔10+P=(x+3z+2(x+y))/(x+y)+(z+3x+2(y+z))/(y+z)+(4y+6(x+z))/(x+z)`
`⇔10+P=(3x+2y+3z)/(x+y)+(3x+2y+3z)/(y+z)+(2(3x+2y+3z))/(x+z)`
`⇔10+P=(3x+2y+3z)(1/(x+y)+1/(y+z)+2/(x+z))`
`⇔10+P=((x+y)+(y+z)+2(x+z))(1/(x+y)+1/(y+z)+2/(x+z))`
theo `bu-nhi-a`
`⇔10+P≥(1.1+1.1+√2.√2)^2`
`⇔10+P≥16`
`⇔P≥6`
`”=”`xẩy ra khi :
`x=y=z`
Đáp án:
Giải thích các bước giải:
$P=(\dfrac{x+3z}{x+y}+2)+(\dfrac{z+3x}{y+z}+2)+(\dfrac{4y}{z+x}+6)-10$
$P=(\dfrac{3x+2y+3z}{x+y})+(\dfrac{2y+3z+3x}{y+z})+(\dfrac{4y+6z+6x}{z+x})-10$
$P=(3x+2y+3z)(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{2}{x+z})-10$
$P=[(x+y)+(y+z)+2(x+z)](\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{2}{z+x})-10≥(1+1+\sqrt{2}.\sqrt{2})^2-10=6$
Vậy $P_{min}=6$ khi $(x+y)^2=(y+z)^2=(z+x)^2$ hay $x=y=z$