cho a+b+c=0 và a,b,c khác 0 cmr √(1/a ²+1/b ²+1/c ²) = ║1/a+1/b+1/c .

cho a+b+c=0 và a,b,c khác 0
cmr √(1/a ²+1/b ²+1/c ²) = ║1/a+1/b+1/c .

0 bình luận về “cho a+b+c=0 và a,b,c khác 0 cmr √(1/a ²+1/b ²+1/c ²) = ║1/a+1/b+1/c .”

  1. Giải thích các bước giải:

    Ta có:

    $a+b+c=0$

    $\to \dfrac{a+b+c}{abc}=0$

    $\to\dfrac1b\cdot\dfrac1c+\dfrac1a\cdot \dfrac1c+\dfrac1a\cdot\dfrac1b=0$

    $\to 2\left(\dfrac1b\cdot\dfrac1c+\dfrac1a\cdot \dfrac1c+\dfrac1a\cdot\dfrac1b\right)=0$

    $\to\dfrac1{a^2}+\dfrac1{b^2}+\dfrac1{c^2}+ 2\left(\dfrac1b\cdot\dfrac1c+\dfrac1a\cdot \dfrac1c+\dfrac1a\cdot\dfrac1b\right)=\dfrac1{a^2}+\dfrac1{b^2}+\dfrac1{c^2}$

    $\to\left(\dfrac1a+\dfrac1b+\dfrac1c\right)^2=\dfrac1{a^2}+\dfrac1{b^2}+\dfrac1{c^2}$

    $\to \sqrt{\dfrac1{a^2}+\dfrac1{b^2}+\dfrac1{c^2}}=\sqrt{\left(\dfrac1a+\dfrac1b+\dfrac1c\right)^2}$

    $\to \sqrt{\dfrac1{a^2}+\dfrac1{b^2}+\dfrac1{c^2}}=\Bigg|\dfrac1a+\dfrac1b+\dfrac1c\Bigg|$

    Bình luận

Viết một bình luận