cho (a+b+c)^2 = a^2 + b^2 + c^2. cmr: 1/a^3 +1/b^3 + 1/c^3 = 3/abc 03/10/2021 Bởi Audrey cho (a+b+c)^2 = a^2 + b^2 + c^2. cmr: 1/a^3 +1/b^3 + 1/c^3 = 3/abc
Có `(a+b+c)^2=a^2+b^2+c^2` `<=>ab+ac+bc=0` `<=>(ab+ac+bc)/(abc)=0` (`a≠0;b≠0;c≠0`) `<=>1/a+1/b+1/c=0` `<=>1/a=-1/b-1/c` `<=>1/(a^3)=-1/(b^3)-3/(bc) . (1/b+1/c)-1/(c^3)` `<=>1/(a^3)+1/(b^3)+1/(c^3)=3/(bc) . (-1/b-1/c)=3/(abc)` Bình luận
Có `(a+b+c)^2=a^2+b^2+c^2`
`<=>ab+ac+bc=0`
`<=>(ab+ac+bc)/(abc)=0` (`a≠0;b≠0;c≠0`)
`<=>1/a+1/b+1/c=0`
`<=>1/a=-1/b-1/c`
`<=>1/(a^3)=-1/(b^3)-3/(bc) . (1/b+1/c)-1/(c^3)`
`<=>1/(a^3)+1/(b^3)+1/(c^3)=3/(bc) . (-1/b-1/c)=3/(abc)`