Cho a+b+c+d =0 a^3+b^3+c^3+d^3=3(ab-cd)(c+d) 09/07/2021 Bởi Liliana Cho a+b+c+d =0 a^3+b^3+c^3+d^3=3(ab-cd)(c+d)
Giải thích các bước giải: Ta có: \(\begin{array}{l}a + b + c + d = 0 \Rightarrow a + b = – \left( {c + d} \right)\\{a^3} + {b^3} + {c^3} + {d^3}\\ = \left( {{a^3} + 3{a^2}b + 3a{b^2} + {b^3}} \right) + \left( {{c^3} + 3{c^2}d + 3c{d^2} + {d^3}} \right) – \left( {3{a^2}b + 3a{b^2} + 3{c^2}d + 3c{d^2}} \right)\\ = {\left( {a + b} \right)^3} + {\left( {c + d} \right)^3} – 3ab\left( {a + b} \right) – 3cd\left( {c + d} \right)\\ = {\left[ { – \left( {c + d} \right)} \right]^3} + {\left( {c + d} \right)^3} – 3ab.\left[ { – \left( {c + d} \right)} \right] – 3cd\left( {c + d} \right)\\ = – {\left( {c + d} \right)^3} + {\left( {c + d} \right)^3} + 3ab\left( {c + d} \right) – 3cd\left( {c + d} \right)\\ = 3ab\left( {c + d} \right) – 3cd\left( {c + d} \right)\\ = 3.\left( {c + d} \right)\left( {ab – cd} \right)\end{array}\) Bình luận
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a + b + c + d = 0 \Rightarrow a + b = – \left( {c + d} \right)\\
{a^3} + {b^3} + {c^3} + {d^3}\\
= \left( {{a^3} + 3{a^2}b + 3a{b^2} + {b^3}} \right) + \left( {{c^3} + 3{c^2}d + 3c{d^2} + {d^3}} \right) – \left( {3{a^2}b + 3a{b^2} + 3{c^2}d + 3c{d^2}} \right)\\
= {\left( {a + b} \right)^3} + {\left( {c + d} \right)^3} – 3ab\left( {a + b} \right) – 3cd\left( {c + d} \right)\\
= {\left[ { – \left( {c + d} \right)} \right]^3} + {\left( {c + d} \right)^3} – 3ab.\left[ { – \left( {c + d} \right)} \right] – 3cd\left( {c + d} \right)\\
= – {\left( {c + d} \right)^3} + {\left( {c + d} \right)^3} + 3ab\left( {c + d} \right) – 3cd\left( {c + d} \right)\\
= 3ab\left( {c + d} \right) – 3cd\left( {c + d} \right)\\
= 3.\left( {c + d} \right)\left( {ab – cd} \right)
\end{array}\)