cho `a;b;c` là `3` số dương thõa mãn` :1/(a+1)+1/(b+1)+1/(c+1)=2` tìm `maxQ=abc` 19/09/2021 Bởi Madeline cho `a;b;c` là `3` số dương thõa mãn` :1/(a+1)+1/(b+1)+1/(c+1)=2` tìm `maxQ=abc`
`1/(a+1)+1/(b+1)+1/(c+1)≥(9)/(1+1+1+a+b+c)` `⇔2≥(9)/(3+a+b+c)` `⇔6+2a+2b+2c≥9` `⇔a+b+c≥3/2` ⇔\begin{cases} \frac{1}{a+1}+ \frac{1}{b+1}+ \frac{1}{c+1}=2\\\frac{1}{b+1}+\frac{1}{a+1}+ \frac{1}{c+1}=2\\\frac{1}{c+1}+ \frac{1}{b+1}+ \frac{1}{c+1}=2 \end{cases} ⇔\begin{cases} \frac{1}{a+1}=(1- \frac{1}{b+1})+(1- \frac{1}{c+1})\\\frac{1}{b+1}=(1- \frac{1}{a+1})+(1- \frac{1}{c+1})\\\frac{1}{c+1}=(1- \frac{1}{b+1})+(1- \frac{1}{a+1}) \end{cases} ⇔\begin{cases} \frac{1}{a+1}=\frac{b}{b+1}+\frac{c}{c+1}\\\frac{1}{b+1}=\frac{a}{a+1}+ \frac{c}{c+1}\\\frac{1}{c+1}=\frac{b}{b+1}+ \frac{a}{a+1} \end{cases} ⇔\begin{cases} \frac{1}{a+1}≥\sqrt(\frac{bc}{(b+1)(c+1)})\\\frac{1}{b+1}≥\sqrt(\frac{ac}{(a+1)(c+1)})\\\frac{1}{c+1}≥ \sqrt(\frac{ba}{(b+1)(a+1)})\end{cases} `⇒1/((a+1)(b+1)(c+1))≥8\sqrt((a^2b^2c^2)/((a+b)(b+c)(c+a))^2)` `⇒1/((a+1)(b+1)(c+1))≥8(abc)/((a+b)(b+c)(c+a))` `⇒1≥8abc` `⇒1/8 ≥abc` `”=”` xẩy ra khi : \begin{cases}a+b+c=3/2 \\a=b=c \end{cases} `⇒a=b=c=1/2` vậy `maxQ=1/8` khi `a=b=c=1/2` Bình luận
`1/(a+1)+1/(b+1)+1/(c+1)≥(9)/(1+1+1+a+b+c)`
`⇔2≥(9)/(3+a+b+c)`
`⇔6+2a+2b+2c≥9`
`⇔a+b+c≥3/2`
⇔\begin{cases} \frac{1}{a+1}+ \frac{1}{b+1}+ \frac{1}{c+1}=2\\\frac{1}{b+1}+\frac{1}{a+1}+ \frac{1}{c+1}=2\\\frac{1}{c+1}+ \frac{1}{b+1}+ \frac{1}{c+1}=2 \end{cases}
⇔\begin{cases} \frac{1}{a+1}=(1- \frac{1}{b+1})+(1- \frac{1}{c+1})\\\frac{1}{b+1}=(1- \frac{1}{a+1})+(1- \frac{1}{c+1})\\\frac{1}{c+1}=(1- \frac{1}{b+1})+(1- \frac{1}{a+1}) \end{cases}
⇔\begin{cases} \frac{1}{a+1}=\frac{b}{b+1}+\frac{c}{c+1}\\\frac{1}{b+1}=\frac{a}{a+1}+ \frac{c}{c+1}\\\frac{1}{c+1}=\frac{b}{b+1}+ \frac{a}{a+1} \end{cases}
⇔\begin{cases} \frac{1}{a+1}≥\sqrt(\frac{bc}{(b+1)(c+1)})\\\frac{1}{b+1}≥\sqrt(\frac{ac}{(a+1)(c+1)})\\\frac{1}{c+1}≥ \sqrt(\frac{ba}{(b+1)(a+1)})\end{cases}
`⇒1/((a+1)(b+1)(c+1))≥8\sqrt((a^2b^2c^2)/((a+b)(b+c)(c+a))^2)`
`⇒1/((a+1)(b+1)(c+1))≥8(abc)/((a+b)(b+c)(c+a))`
`⇒1≥8abc`
`⇒1/8 ≥abc`
`”=”` xẩy ra khi :
\begin{cases}a+b+c=3/2 \\a=b=c \end{cases}
`⇒a=b=c=1/2`
vậy `maxQ=1/8` khi `a=b=c=1/2`