cho a,b,c thỏa mãn a/2016=b/2017=c/2018 tính giá trị của biểu thức chứng minh 4(a-b)(b-c)=(c-a)^2 15/09/2021 Bởi Eliza cho a,b,c thỏa mãn a/2016=b/2017=c/2018 tính giá trị của biểu thức chứng minh 4(a-b)(b-c)=(c-a)^2
Giải thích các bước giải: Ta có: $\begin{array}{l}\dfrac{a}{{2016}} = \dfrac{b}{{2017}} = \dfrac{c}{{2018}}\\ \Rightarrow \left\{ \begin{array}{l}\dfrac{a}{{2016}} = \dfrac{b}{{2017}} = \dfrac{{a – b}}{{2016 – 2017}} = – \left( {a – b} \right)\\\dfrac{b}{{2017}} = \dfrac{c}{{2018}} = \dfrac{{b – c}}{{2017 – 2018}} = – \left( {b – c} \right)\\\dfrac{a}{{2016}} = \dfrac{c}{{2018}} = \dfrac{{c – a}}{{2018 – 2016}} = \dfrac{{c – a}}{2}\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}{\left( {\dfrac{a}{{2016}}} \right)^2} = \left( { – \left( {a – b} \right)} \right)\left( { – \left( {b – c} \right)} \right) = \left( {a – b} \right)\left( {b – c} \right)\\{\left( {\dfrac{a}{{2016}}} \right)^2} = \dfrac{{{{\left( {c – a} \right)}^2}}}{4}\end{array} \right.\\ \Rightarrow \left( {a – b} \right)\left( {b – c} \right) = \dfrac{{{{\left( {c – a} \right)}^2}}}{4}\\ \Rightarrow 4\left( {a – b} \right)\left( {b – c} \right) = {\left( {c – a} \right)^2}\end{array}$ Bình luận
Giải thích các bước giải:
Ta có:
$\begin{array}{l}
\dfrac{a}{{2016}} = \dfrac{b}{{2017}} = \dfrac{c}{{2018}}\\
\Rightarrow \left\{ \begin{array}{l}
\dfrac{a}{{2016}} = \dfrac{b}{{2017}} = \dfrac{{a – b}}{{2016 – 2017}} = – \left( {a – b} \right)\\
\dfrac{b}{{2017}} = \dfrac{c}{{2018}} = \dfrac{{b – c}}{{2017 – 2018}} = – \left( {b – c} \right)\\
\dfrac{a}{{2016}} = \dfrac{c}{{2018}} = \dfrac{{c – a}}{{2018 – 2016}} = \dfrac{{c – a}}{2}
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
{\left( {\dfrac{a}{{2016}}} \right)^2} = \left( { – \left( {a – b} \right)} \right)\left( { – \left( {b – c} \right)} \right) = \left( {a – b} \right)\left( {b – c} \right)\\
{\left( {\dfrac{a}{{2016}}} \right)^2} = \dfrac{{{{\left( {c – a} \right)}^2}}}{4}
\end{array} \right.\\
\Rightarrow \left( {a – b} \right)\left( {b – c} \right) = \dfrac{{{{\left( {c – a} \right)}^2}}}{4}\\
\Rightarrow 4\left( {a – b} \right)\left( {b – c} \right) = {\left( {c – a} \right)^2}
\end{array}$