cho a,b,c thỏa mãn a+b+c=0 chứng mính a^3+b^3+c^3=3abc

cho a,b,c thỏa mãn a+b+c=0 chứng mính a^3+b^3+c^3=3abc

0 bình luận về “cho a,b,c thỏa mãn a+b+c=0 chứng mính a^3+b^3+c^3=3abc”

  1. Ta có: a3 + b3 = (a + b)3 – 3ab(a + b)

    Nên a3 + b3 + c3 = (a + b)3 – 3ab(a + b) + c3 (1)

    Ta có: a + b + c = 0 ⇒ a + b = – c (2)

    Thay (2) vào (1) ta có:

    a3 + b3 + c3 = (-c)3 – 3ab(-c) + c3 = -c3 + 3abc + c3 = 3abc

    Vậy VT=VP

    Bình luận

Viết một bình luận