Cho a,b,c tm: b-c/(a-b)(a-c) + c-a/(b-a)(b-c) + a-b/(c-a)(c-b) = 2015
Tính gtrị biểu thức: A= 1/a-b + 1/b-c + 1/c-a
Cho a,b,c tm: b-c/(a-b)(a-c) + c-a/(b-a)(b-c) + a-b/(c-a)(c-b) = 2015
Tính gtrị biểu thức: A= 1/a-b + 1/b-c + 1/c-a
Ta có:
`\qquad {b-c}/{(a-b)(a-c)} `
`={(a-c)-(a-b)}/{(a-b)(a-c)}`
`={a-c}/{(a-b)(a-c)}-{a-b}/{(a-b)(a-c)}`
`=1/{a-b}-1/{a-c}=1/{a-b}+1/{c-a}`
$\\$
`\qquad {c-a}/{(b-a)(b-c)} `
`={(b-a)-(b-c)}/{(b-a)(b-c)}`
`={b-a}/{(b-a)(b-c)}-{b-c}/{(b-a)(b-c)}`
`=1/{b-c}-1/{b-a}=1/{b-c}+1/{a-b}`
$\\$
`\qquad {a-b}/{(c-a)(c-b)}`
`={(c-b)-(c-a)}/{(c-a)(c-b)}`
`={c-b}/{(c-a)(c-b)}-{c-a}/{(c-a)(c-b)}`
`=1/{c-a}-1/{c-b}=1/{c-a}+1/{b-c}`
$\\$
Theo đề bài:
`{b-c}/{(a-b)(a-c)} + {c-a}/{(b-a)(b-c)} + {a-b}/{(c-a)(c-b)} = 2015`
`=>1/{a-b}+1/{c-a}+1/{b-c}+1/{a-b}+1/{c-a}+1/{b-c}=2015`
`=>2/{a-b}+2/{b-c}+2/{c-a}=2015`
`=>2(1/{a-b}+1/{b-c}+1/{c-a})=2015`
`=>1/{a-b}+1/{b-c}+1/{c-a}={2015}/2`
$\\$
Vậy `A=1/{a-b}+1/{b-c}+1/{c-a}={2015}/2`