Cho A= $\frac{19^{2021}}{1+19+19^{2}+…+19^{2020}}$         B = $\frac{18^{2021}}{1+18+18^{2}+…+18^{2020}}$   So sánh A và B

Cho A= $\frac{19^{2021}}{1+19+19^{2}+…+19^{2020}}$ 
       B = $\frac{18^{2021}}{1+18+18^{2}+…+18^{2020}}$  
So sánh A và B

0 bình luận về “Cho A= $\frac{19^{2021}}{1+19+19^{2}+…+19^{2020}}$         B = $\frac{18^{2021}}{1+18+18^{2}+…+18^{2020}}$   So sánh A và B”

  1. Đáp án:

    $A > B$

    Giải thích các bước giải:

    Ta có:

    $+)\quad 1+ 19+ 19^2 +\dots + 19^{2020}$

    $= \dfrac{19^{2021} -1}{18}$

    $\to A =\dfrac{19^{2021}}{1+ 19+ 19^2 +\dots + 19^{2020}}$

    $\to A =\dfrac{18.19^{2021}}{19^{2021} -1}$

    $+)\quad 1+ 18+ 18^2 +\dots + 18^{2020}$

    $=\dfrac{18^{2021} -1}{17}$

    $\to B =\dfrac{17.18^{2021}}{18^{2021}-1}$

    Xét $A – B =\dfrac{18.19^{2021}}{19^{2021} -1} – \dfrac{17.18^{2021}}{18^{2021} -1}$

    $=\dfrac{18.19^{2021}(18^{2021} – 1) – 17.18^{2021}(19^{2021} -1)}{(19^{2021} -1)(18^{2021} -1)}$

    Ta có:

    $\quad 18.19^{2021}(18^{2021} – 1) – 17.18^{2021}(19^{2021} -1)$

    $= 18.(18.19)^{2021} – 18.19^{2021} – 17.(18.19)^{2021} + 17.18^{2021}$

    $= (18.19)^{2021} + 17.18^{2021} – 18.19^{2021} > 0$

    Lại có: $(19^{2021} -1)(18^{2021} -1)>0$

    $\to \dfrac{18.19^{2021}(18^{2021} – 1) – 17.18^{2021}(19^{2021} -1)}{(19^{2021} -1)(18^{2021} -1)}$

    $\to A – B > 0$

    $\to A > B$

    Bình luận

Viết một bình luận