Cho a khác b khác c khác 0 và $\frac{a+b}{c}$ =$\frac{c+a}{b}$ =$\frac{b+c}{a}$
Tính M= (1+$\frac{a}{b}$ ).(1+$\frac{b}{c}$ ).(1+$\frac{c}{a}$ )
Cho a khác b khác c khác 0 và $\frac{a+b}{c}$ =$\frac{c+a}{b}$ =$\frac{b+c}{a}$
Tính M= (1+$\frac{a}{b}$ ).(1+$\frac{b}{c}$ ).(1+$\frac{c}{a}$ )
Đáp án:
$\begin{cases}M = -1\quad khi\quad a+b+c = 0\\M = 8\quad khi\quad a+b+c\ne 0\end{cases}$
Giải thích các bước giải:
$M = \left(1+\dfrac ab\right)\cdot\left(1+\dfrac bc\right)\cdot\left(1+\dfrac ca\right)$
$\to M =\dfrac{a+b}{b}\cdot\dfrac{b+c}{c}\cdot\dfrac{c+a}{a}$
$+)\quad Khi\,\,a+b+c = 0$
$\to \begin{cases}a + b= – c\\b + c =-a\\c + a = -b\end{cases}$
$\to M =\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}$
$\to M = -1$
$+)\quad Khi\,\,a+b+c\ne 0$
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
$\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{a+b+b+c+c+a}{a+b+c}=\dfrac{2(a+b+c)}{a+b+c}=2$
$\to \begin{cases}a+b = 2c\\b+c = 2a\\c + a = 2b\end{cases}$
$\to M =\dfrac{2c}{b}\cdot\dfrac{2a}{c}\cdot\dfrac{2b}{a}$
$\to M = 8$
Đáp án:
$\underline{\text{Bạn tham khảo !!!}}$
Giải thích các bước giải:
Xét $a+b+c=0$
$\to \begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}$
Ta có:
$M=(1+\dfrac{a}{b})(1+\dfrac{b}{c})(1+\dfrac{c}{a})$
$=\dfrac{a+b}{b} . \dfrac{b+c}{c} . \dfrac{c+a}{a}$
$=\dfrac{-c}{b} . \dfrac{-a}{c} . \dfrac{c+a}{a}$
$=-1$
Xét $a+b+c\ne0$
Theo tính chất dãy tỉ số bằng nhau, ta có:
$\dfrac{a+b}{c}=\dfrac{c+a}{b}=\dfrac{b+c}{a}=\dfrac{a+b+c+a+b+c}{c+b+a}=\dfrac{2(a+b+c)}{a+b+c}=2$
$\to \begin{cases}\dfrac{a+b}{c}=2\\\dfrac{c+a}{b}=2\\\dfrac{b+c}{a}=2\end{cases}$
$\to \begin{cases}a+b=2c\\c+a=2b\\b+c=2a\end{cases}$
Ta có:
$M=(1+\dfrac{a}{b})(1+\dfrac{b}{c})(1+\dfrac{c}{a})$
$=\dfrac{a+b}{b} . \dfrac{b+c}{c} . \dfrac{c+a}{a}$
$=\dfrac{(a+b)(b+c)(c+a)}{abc}$
$=\dfrac{2c . 2a . 2b}{abc}$
$=\dfrac{8abc}{abc}$
$=8$
Vậy $\left[\begin{array}{l}M=-1\\M=8\end{array}\right.$