Cho A={x∈R||x-2|>3} B={x ∈ R||x+2|<1} tìm A ∪B, A ∩B, A\B, A/B 24/07/2021 Bởi Ximena Cho A={x∈R||x-2|>3} B={x ∈ R||x+2|<1} tìm A ∪B, A ∩B, A\B, A/B
Giải thích các bước giải: Ta có: \(\begin{array}{l}*)\\\left| {x – 2} \right| > 3 \Leftrightarrow \left[ \begin{array}{l}x – 2 > 3\\x – 2 < – 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x > 5\\x < – 1\end{array} \right.\\ \Rightarrow A = \left\{ {x \in R|x \in \left( { – \infty ; – 1} \right) \cup \left( {5; + \infty } \right)} \right\}\\*)\\\left| {x + 2} \right| < 1 \Leftrightarrow – 1 < x + 2 < 1 \Leftrightarrow – 3 < x < – 1\\ \Rightarrow B = \left\{ {x \in R|x \in \left( { – 3; – 1} \right)} \right\}\\ \Rightarrow A \cup B = \left( { – \infty ; – 1} \right) \cup \left( {5; + \infty } \right)\\A \cap B = \left( { – 3; – 1} \right)\\A\backslash B = \left( { – \infty ; – 3} \right] \cup \left( {5; + \infty } \right)\\B\backslash A = \emptyset \end{array}\) Bình luận
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
*)\\
\left| {x – 2} \right| > 3 \Leftrightarrow \left[ \begin{array}{l}
x – 2 > 3\\
x – 2 < – 3
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x > 5\\
x < – 1
\end{array} \right.\\
\Rightarrow A = \left\{ {x \in R|x \in \left( { – \infty ; – 1} \right) \cup \left( {5; + \infty } \right)} \right\}\\
*)\\
\left| {x + 2} \right| < 1 \Leftrightarrow – 1 < x + 2 < 1 \Leftrightarrow – 3 < x < – 1\\
\Rightarrow B = \left\{ {x \in R|x \in \left( { – 3; – 1} \right)} \right\}\\
\Rightarrow A \cup B = \left( { – \infty ; – 1} \right) \cup \left( {5; + \infty } \right)\\
A \cap B = \left( { – 3; – 1} \right)\\
A\backslash B = \left( { – \infty ; – 3} \right] \cup \left( {5; + \infty } \right)\\
B\backslash A = \emptyset
\end{array}\)