Cho: $a \vdots 3+b$ $5-a+b \vdots a+13$ Vậy $a.2b$ chia hết cho ……… 06/09/2021 Bởi Ayla Cho: $a \vdots 3+b$ $5-a+b \vdots a+13$ Vậy $a.2b$ chia hết cho ………
Vì $a\vdots 3+b$$\Rightarrow 3+b\in Ư(a)$$\Rightarrow 3+b=a\vdots a$Thay $a=3+b$ vào $5-a+b$, ta được:$5-a+b \vdots a+13$$\Leftrightarrow 5-(3+b)+b\vdots a+13$$\Leftrightarrow 5-3-b+b\vdots a+13$$\Leftrightarrow 2\vdots a+13$$\Rightarrow (a+13)\in Ư(2)=\left \{ ±1;±2 \right \}$$\Rightarrow a\in \left \{ -11;-12;-14;-15 \right \}$$\Rightarrow (3+b)\in \left\{\begin{matrix}Ư(-11)=\left \{ ±1;±11 \right \}\\ Ư(-12)=\left \{ ±1;±2;±3;±4;±6;±12 \right \}\\ Ư(-14)=\left \{ ±1;±2;±7;±14 \right \}\\ Ư(-15)=\left \{ ±1;±3;±5;±15 \right \}\end{matrix}\right.$$\Rightarrow b\in \left \{ -1;-4;8;-14;-5;0;-6;1;-7;3;-9;9;-15;4;;11;-17;2;-8;12;-18 \right \}$$\Rightarrow a.2b\vdots …$ Bình luận
Vì $a\vdots 3+b$
$\Rightarrow 3+b\in Ư(a)$
$\Rightarrow 3+b=a\vdots a$
Thay $a=3+b$ vào $5-a+b$, ta được:
$5-a+b \vdots a+13$
$\Leftrightarrow 5-(3+b)+b\vdots a+13$
$\Leftrightarrow 5-3-b+b\vdots a+13$
$\Leftrightarrow 2\vdots a+13$
$\Rightarrow (a+13)\in Ư(2)=\left \{ ±1;±2 \right \}$
$\Rightarrow a\in \left \{ -11;-12;-14;-15 \right \}$
$\Rightarrow (3+b)\in \left\{\begin{matrix}
Ư(-11)=\left \{ ±1;±11 \right \}\\
Ư(-12)=\left \{ ±1;±2;±3;±4;±6;±12 \right \}\\
Ư(-14)=\left \{ ±1;±2;±7;±14 \right \}\\
Ư(-15)=\left \{ ±1;±3;±5;±15 \right \}
\end{matrix}\right.$
$\Rightarrow b\in \left \{ -1;-4;8;-14;-5;0;-6;1;-7;3;-9;9;-15;4;;11;-17;2;-8;12;-18 \right \}$
$\Rightarrow a.2b\vdots …$