cho abc( ab + bc + ca ) khác , giải phương trình ẩn x x-b-c / a+ x-c-a /b + x-a-b/c= 3 28/10/2021 Bởi Nevaeh cho abc( ab + bc + ca ) khác , giải phương trình ẩn x x-b-c / a+ x-c-a /b + x-a-b/c= 3
Đáp án: $x=a+b+c$ Giải thích các bước giải: Ta có: $\dfrac{x-b-c}{a}+\dfrac{x-c-a}{b}+\dfrac{x-a-b}{c}=3$ $\to (\dfrac{x-b-c}{a}-1)+(\dfrac{x-c-a}{b}-1)+(\dfrac{x-a-b}{c}-1)=0$ $\to \dfrac{x-b-c-a}{a}+d\frac{x-c-a-b}{b}+\dfrac{x-a-b-c}{c}=0$ $\to \dfrac{x-a-b-c}a+\dfrac{x-a-b-c}b+\dfrac{x-a-b-c}c=0$ $\to (x-a-b-c)(\dfrac1a+\dfrac1b+\dfrac1c)=0$ Vì $abc(ab+bc+ca)\ne 0$ $\to ab+bc+ca\ne 0, abc\ne 0$ $\to \dfrac{ab+bc+ca}{abc}\ne 0$ $\to \dfrac1a+\dfrac1b+\dfrac1c\ne 0$ $\to x-a-b-c=0$ $\to x=a+b+c$ Bình luận
Đáp án: $x=a+b+c$ Giải thích các bước giải: $\dfrac{x-b-c}{a}+$ $\dfrac{x-c-a}{b}+$ $\dfrac{x-a-b}{c}=3$ $⇔$$\dfrac{x-b-c}{a}-1 +\dfrac{x-c-a}{b}-1+$ $\dfrac{x-a-b}{c}-1=0$ $⇔$$\dfrac{x-b-c-a}{a} +\dfrac{x-c-a-b}{b}+$ $\dfrac{x-a-b-c}{c}=0$ $⇔$$(x-a-b-c)(\dfrac{1}{a}+$ $\dfrac{1}{b}+$ $\dfrac{1}{c})=0$ Vì $abc(ab+bc+ca)\neq0$ $⇒$$\dfrac{ab+bc+ca}{abc}$ $⇒$ $\dfrac{1}{a}+$ $\dfrac{1}{c}+$ $\dfrac{1}{b}$ $\neq0$ $⇒x-a-b-c=0$ $⇔x=a+b+c$ Bình luận
Đáp án: $x=a+b+c$
Giải thích các bước giải:
Ta có:
$\dfrac{x-b-c}{a}+\dfrac{x-c-a}{b}+\dfrac{x-a-b}{c}=3$
$\to (\dfrac{x-b-c}{a}-1)+(\dfrac{x-c-a}{b}-1)+(\dfrac{x-a-b}{c}-1)=0$
$\to \dfrac{x-b-c-a}{a}+d\frac{x-c-a-b}{b}+\dfrac{x-a-b-c}{c}=0$
$\to \dfrac{x-a-b-c}a+\dfrac{x-a-b-c}b+\dfrac{x-a-b-c}c=0$
$\to (x-a-b-c)(\dfrac1a+\dfrac1b+\dfrac1c)=0$
Vì $abc(ab+bc+ca)\ne 0$
$\to ab+bc+ca\ne 0, abc\ne 0$
$\to \dfrac{ab+bc+ca}{abc}\ne 0$
$\to \dfrac1a+\dfrac1b+\dfrac1c\ne 0$
$\to x-a-b-c=0$
$\to x=a+b+c$
Đáp án:
$x=a+b+c$
Giải thích các bước giải:
$\dfrac{x-b-c}{a}+$ $\dfrac{x-c-a}{b}+$ $\dfrac{x-a-b}{c}=3$
$⇔$$\dfrac{x-b-c}{a}-1 +\dfrac{x-c-a}{b}-1+$ $\dfrac{x-a-b}{c}-1=0$
$⇔$$\dfrac{x-b-c-a}{a} +\dfrac{x-c-a-b}{b}+$ $\dfrac{x-a-b-c}{c}=0$
$⇔$$(x-a-b-c)(\dfrac{1}{a}+$ $\dfrac{1}{b}+$ $\dfrac{1}{c})=0$
Vì $abc(ab+bc+ca)\neq0$
$⇒$$\dfrac{ab+bc+ca}{abc}$ $⇒$ $\dfrac{1}{a}+$ $\dfrac{1}{c}+$ $\dfrac{1}{b}$ $\neq0$
$⇒x-a-b-c=0$
$⇔x=a+b+c$