Cho ` ΔABC` vuông ở $\widehat{A}$, có $\widehat{C}$ = `30^o`, AH `⊥` BC `(H ∈ BC)`. Trên đoạn `HC` lấy điểm $\widehat{D}$ sao cho `HD = HB`. Từ C kẻ

Cho ` ΔABC` vuông ở $\widehat{A}$, có $\widehat{C}$ = `30^o`, AH `⊥` BC `(H ∈ BC)`. Trên đoạn `HC` lấy điểm $\widehat{D}$ sao cho `HD = HB`. Từ C kẻ CE `⊥` AD. Chứng minh :
a) `ΔABD` là tam giác đều
b) `AH = CE`
c) `EH // AC`

0 bình luận về “Cho ` ΔABC` vuông ở $\widehat{A}$, có $\widehat{C}$ = `30^o`, AH `⊥` BC `(H ∈ BC)`. Trên đoạn `HC` lấy điểm $\widehat{D}$ sao cho `HD = HB`. Từ C kẻ”

  1. Hai tam giác vuông AHB và AHD có:

    AH chung; HD = HB

    Do đó: ∆AHB = ∆AHD (2 cạnh góc vuông)

    ⇒ AB = AD

    ⇒ ∆ABD cân tại A (1)

    Mặt khác ∆ ABC có: ( ∠A = 90 độ ) có : ∠C = 30 độ

    ∠A + ∠B + ∠C = 180 độ (tổng 3 góc của 1 tam giác)

    900 + ∠B + 300 = 180 độ

    ⇒ ∠B = 60 độ (2)

    Từ (1) và (2) ∆ABD là tam giác đều.

    b) ∆ABD là tam giác đều.

    ∠BAD= 600 ∠EAC = 90 độ – 60 độ = 30 độ (∠A =90 độ )

    ∆ AHC (∠AHC= 90 độ ) và ∆CEA (∠CEA = 90 độ ) có :

    AC cạnh huyền chung

    ∠EAC = ∠HCA = 30 độ

    Vậy : ∆AHC = ∆CEA( cạnh huyền – góc nhọn)

    ⇒ AH = CE (hai cạnh tương ứng )

    c) EC = HA = 30 độ

    ∆DAC cân tại D DA=DC

    Mà: HC = EA (∆ AHC=∆ CEA)

    Nên: DH= DE ∆ DHE cân tại D .

    Hai tam giác cân DAC và DEH có :

    ∠ADC = ∠EDC (đ .đ) ⇒ ∠DEH= ∠EAC

    Mà : ∠DHE và ∠EAC là cặp góc so le trong ⇒ HE//AC

     xin hya nhất

    Bình luận
  2. Hai tam giác vuông AHB và AHD có:

    AH chung; HD = HB

    Do đó: ∆AHB = ∆AHD (2 cạnh góc vuông)

    ⇒ AB = AD

    ⇒ ∆ABD cân tại A (1)

    Mặt khác ∆ ABC có: ( ∠A = 90 độ ) có : ∠C = 30 độ

    ∠A + ∠B + ∠C = 180 độ (tổng 3 góc của 1 tam giác)

    900 + ∠B + 300 = 180 độ

    ⇒ ∠B = 60 độ (2)

    Từ (1) và (2) ∆ABD là tam giác đều.

    b) ∆ABD là tam giác đều.

    ∠BAD= 600 ∠EAC = 90 độ – 60 độ = 30 độ (∠A =90 độ )

    ∆ AHC (∠AHC= 90 độ ) và ∆CEA (∠CEA = 90 độ ) có :

    AC cạnh huyền chung

    ∠EAC = ∠HCA = 30 độ

    Vậy : ∆AHC = ∆CEA( cạnh huyền – góc nhọn)

    ⇒ AH = CE (hai cạnh tương ứng )

    c) EC = HA = 30 độ

    ∆DAC cân tại D DA=DC

    Mà: HC = EA (∆ AHC=∆ CEA)

    Nên: DH= DE ∆ DHE cân tại D .

    Hai tam giác cân DAC và DEH có :

    ∠ADC = ∠EDC (đ .đ) ⇒ ∠DEH= ∠EAC

    Mà : ∠DHE và ∠EAC là cặp góc so le trong ⇒ HE//AC

    Bình luận

Viết một bình luận