Cho ΔABC vuông tại A, M là trung điểm AB
a)Cho biết BC = 10 cm, AB = 6cm.Tính độ dài đoạn thẳng AC
b)Trên tia đối của tia MC lấy điểm D sao cho MD=MC
Chứng minh rằng ΔMAC= ΔMBD và AC=BD
c)Gọi K là điểm trên đoạn thẳng AM sao cho AK=
2
3
AM.Gọi N là giao điểm của CK và AD,I là giao điểm của BN và CD. Chứng minh rằng CD=3ID
LƯU Ý:Giúp em câu c thôi là được rồi ạ(nguyên một bài luôn cũng không sao) =)))
Đáp án:
a, xét tam giác ABC vuông tại A (gt)
=> AB^2 + AC^2 = BC^2 (đl Pytago)
AC = 6 cm; BC = 10 cm
=> AB^2 = 10^2 – 6^2
=> AB^2 = 100 – 36
=> AB^2 = 64
=> AB = 8 do AB > 0
Giải thích các bước giải: