Cho $b^{2}$ = ac ; $c^{2}$ = bd CMR : $\frac{a^{3}+b^{3}+c^{3}}{b^{3}+c^{3}+d^{3}}$ = ($\frac{a+b+c}{b+c+d}$)^3

Cho $b^{2}$ = ac ; $c^{2}$ = bd
CMR : $\frac{a^{3}+b^{3}+c^{3}}{b^{3}+c^{3}+d^{3}}$ = ($\frac{a+b+c}{b+c+d}$)^3

0 bình luận về “Cho $b^{2}$ = ac ; $c^{2}$ = bd CMR : $\frac{a^{3}+b^{3}+c^{3}}{b^{3}+c^{3}+d^{3}}$ = ($\frac{a+b+c}{b+c+d}$)^3”

  1. Giải thích các bước giải:

    $b^2=ac\rightarrow \dfrac{a}{b}=\dfrac{b}{c}$

    $c^2=bd\rightarrow \dfrac{b}{c}=\dfrac{c}{d}$

    $\rightarrow \dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}$ 

    $\rightarrow \dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{(a+b+c)^3}{(b+c+d)^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}$ 

    Bình luận

Viết một bình luận