Cho B = $\frac{3²}{8.11}$ + $\frac{3²}{11.14}$ +…+$\frac{3²}{197.200}$ So sánh B với $\frac{2}{5}$ 18/07/2021 Bởi Camila Cho B = $\frac{3²}{8.11}$ + $\frac{3²}{11.14}$ +…+$\frac{3²}{197.200}$ So sánh B với $\frac{2}{5}$
$\frac{3²}{8.11}$+ $\frac{3²}{11.14}$ +…+$\frac{3²}{197.200}$ = 3( $\frac{3}{8.11}$+ $\frac{3}{11.14}$ +…+$\frac{3}{197.200}$ ) = 3( $\frac{1}{8}$ – $\frac{1}{200}$ ) = 3 – $\frac{3}{25}$ = $\frac{9}{25}$ < $\frac{10}{25}$ = $\frac{9}{25}$<$\frac{2}{5}$ Vậy B < $\frac{2}{5}$ @Kimetsu No Yaiba Bình luận
Đáp án + Giải thích các bước giải: `B=(3^{2})/(8.11)+(3^{2})/(11.14)+(3^{2})/(14.17)+….+(3^{2})/(197.200)` `->(B)/(3)=(3)/(8.11)+(3)/(11.14)+(3)/(14.17)+….+(3)/(197.200)` `->(B)/(3)=(1)/(8)-(1)/(11)+(1)/(11)-(1)/(14)+(1)/(14)-(1)/(17)+….+(1)/(197)-(1)/(200)` `->(B)/(3)=(1)/(8)-(1)/(200)` `->(B)/(3)=(3)/(25)` `->B=(9)/(25)` Có : `(2)/(5)=(2.5)/(5.5)=(10)/(25)` Vì `(9)/(25)<(10)/(25)` `->B<(2)/(5)` Bình luận
$\frac{3²}{8.11}$+ $\frac{3²}{11.14}$ +…+$\frac{3²}{197.200}$
= 3( $\frac{3}{8.11}$+ $\frac{3}{11.14}$ +…+$\frac{3}{197.200}$ )
= 3( $\frac{1}{8}$ – $\frac{1}{200}$ )
= 3 – $\frac{3}{25}$
= $\frac{9}{25}$ < $\frac{10}{25}$ = $\frac{9}{25}$<$\frac{2}{5}$
Vậy B < $\frac{2}{5}$
@Kimetsu No Yaiba
Đáp án + Giải thích các bước giải:
`B=(3^{2})/(8.11)+(3^{2})/(11.14)+(3^{2})/(14.17)+….+(3^{2})/(197.200)`
`->(B)/(3)=(3)/(8.11)+(3)/(11.14)+(3)/(14.17)+….+(3)/(197.200)`
`->(B)/(3)=(1)/(8)-(1)/(11)+(1)/(11)-(1)/(14)+(1)/(14)-(1)/(17)+….+(1)/(197)-(1)/(200)`
`->(B)/(3)=(1)/(8)-(1)/(200)`
`->(B)/(3)=(3)/(25)`
`->B=(9)/(25)`
Có :
`(2)/(5)=(2.5)/(5.5)=(10)/(25)`
Vì `(9)/(25)<(10)/(25)`
`->B<(2)/(5)`