cho b2=ac,c2=bd chứng minh a^3+b^3+c^3/b^3+c^3-d^3=(a+b-c/b+c-d)^3 (Giải theo cách đặt “k” giùm vs ạ) 01/10/2021 Bởi Everleigh cho b2=ac,c2=bd chứng minh a^3+b^3+c^3/b^3+c^3-d^3=(a+b-c/b+c-d)^3 (Giải theo cách đặt “k” giùm vs ạ)
Lời giải: Ta có: $+)\quad b^2 = ac$ $\Rightarrow \dfrac{a}{b} = \dfrac{b}{c}$ $+)\quad c^2 = bd$ $\Rightarrow \dfrac{b}{c} = \dfrac{c}{d}$ Do đó: $\dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d}$ Đặt $\dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = k$ $\Rightarrow \begin{cases}a = kb\\b = kc\\c= kd\end{cases}$ Khi đó: \(\begin{array}{l}+)\quad \dfrac{a^3 + b^3 – c^3}{b^3 + c^3 -d^3}\\= \dfrac{k^3b^3 + k^3c^3 – k^3d^3}{b^3 + c^3 – d^3}\\= \dfrac{k^3(b^3 + c^3 – d^3)}{b^3 + c^3 – d^3}\\= k^3\\+)\quad \left(\dfrac{a +b – c}{b+c-d}\right)^3\\= \left(\dfrac{kb + kc – kd}{b+c-d}\right)^3\\= \left[\dfrac{k(b+c-d)}{b+c-d}\right]^3\\= k^3\\\end{array}\) Vậy $\dfrac{a^3 + b^3 – c^3}{b^3 + c^3 -d^3}=\left(\dfrac{a +b – c}{b+c-d}\right)^3$ Bình luận
Đáp án+Giải thích các bước giải: $\\\text{Ta có:+) $b^2 = ac$}$ $\\=>\dfrac{a}{b} = \dfrac{b}{c}(1)$ $\\+) c^2 = bd$ $\\=>\dfrac{b}{c} = \dfrac{c}{d}(2)$ $\\\text{Từ (1) và (2) =>$\dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d}$}$ $\\\text{Đặt $\dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = k$}$ $\\=>a=kb;c=kc;c=kd$ $\\ +) \dfrac{a^3 + b^3 – c^3}{b^3 + c^3 -d^3}\\ = \dfrac{k^3b^3 + k^3c^3 – k^3d^3}{b^3 + c^3 – d^3}\\ = \dfrac{k^3(b^3 + c^3 – d^3)}{b^3 + c^3 – d^3}\\ = k^3\\ +)(\dfrac{a +b – c}{b+c-d})^3\\ =(\dfrac{kb + kc – kd}{b+c-d})^3\\ = \dfrac{k^3(b+c-d)^3}{(b+c-d)^3}\\ = k^3$ $\text{Vậy $\dfrac{a^3 + b^3 – c^3}{b^3 + c^3 -d^3}=\left(\dfrac{a +b – c}{b+c-d}\right)^3$}$ Bình luận
Lời giải:
Ta có:
$+)\quad b^2 = ac$
$\Rightarrow \dfrac{a}{b} = \dfrac{b}{c}$
$+)\quad c^2 = bd$
$\Rightarrow \dfrac{b}{c} = \dfrac{c}{d}$
Do đó: $\dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d}$
Đặt $\dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = k$
$\Rightarrow \begin{cases}a = kb\\b = kc\\c= kd\end{cases}$
Khi đó:
\(\begin{array}{l}
+)\quad \dfrac{a^3 + b^3 – c^3}{b^3 + c^3 -d^3}\\
= \dfrac{k^3b^3 + k^3c^3 – k^3d^3}{b^3 + c^3 – d^3}\\
= \dfrac{k^3(b^3 + c^3 – d^3)}{b^3 + c^3 – d^3}\\
= k^3\\
+)\quad \left(\dfrac{a +b – c}{b+c-d}\right)^3\\
= \left(\dfrac{kb + kc – kd}{b+c-d}\right)^3\\
= \left[\dfrac{k(b+c-d)}{b+c-d}\right]^3\\
= k^3\\
\end{array}\)
Vậy $\dfrac{a^3 + b^3 – c^3}{b^3 + c^3 -d^3}=\left(\dfrac{a +b – c}{b+c-d}\right)^3$
Đáp án+Giải thích các bước giải:
$\\\text{Ta có:+) $b^2 = ac$}$ $\\=>\dfrac{a}{b} = \dfrac{b}{c}(1)$ $\\+) c^2 = bd$ $\\=>\dfrac{b}{c} = \dfrac{c}{d}(2)$ $\\\text{Từ (1) và (2) =>$\dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d}$}$ $\\\text{Đặt $\dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = k$}$ $\\=>a=kb;c=kc;c=kd$ $\\ +) \dfrac{a^3 + b^3 – c^3}{b^3 + c^3 -d^3}\\ = \dfrac{k^3b^3 + k^3c^3 – k^3d^3}{b^3 + c^3 – d^3}\\ = \dfrac{k^3(b^3 + c^3 – d^3)}{b^3 + c^3 – d^3}\\ = k^3\\ +)(\dfrac{a +b – c}{b+c-d})^3\\ =(\dfrac{kb + kc – kd}{b+c-d})^3\\ = \dfrac{k^3(b+c-d)^3}{(b+c-d)^3}\\ = k^3$ $\text{Vậy $\dfrac{a^3 + b^3 – c^3}{b^3 + c^3 -d^3}=\left(\dfrac{a +b – c}{b+c-d}\right)^3$}$