Cho biểu thức A = (1/x-2 – 2x/4-x² +1/2+x)(2/x -1) a)Tìm x nguyên để A nguyên dương 10/07/2021 Bởi Eloise Cho biểu thức A = (1/x-2 – 2x/4-x² +1/2+x)(2/x -1) a)Tìm x nguyên để A nguyên dương
Đáp án: \(\left[ \begin{array}{l}x = – 6\\x = – 4\\x = – 3\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}DK:x \ne \left\{ { – 2;0;2} \right\}\\A = \left( {\dfrac{1}{{x – 2}} – \dfrac{{2x}}{{4 – {x^2}}} + \dfrac{1}{{x + 2}}} \right).\left( {\dfrac{2}{x} – 1} \right)\\ = \left[ {\dfrac{{x + 2 + 2x + x – 2}}{{\left( {x – 2} \right)\left( {x + 2} \right)}}} \right].\left( {\dfrac{2}{x} – 1} \right)\\ = \dfrac{{4x}}{{\left( {x – 2} \right)\left( {x + 2} \right)}}.\dfrac{{2 – x}}{x}\\ = – \dfrac{4}{{x + 2}}\\A \in {Z^ + }\\ \Leftrightarrow \dfrac{4}{{x + 2}} \in {Z^ – }\\ \Leftrightarrow x + 2 \in U\left( 4 \right)\\ \Leftrightarrow \left[ \begin{array}{l}x + 2 = – 4\\x + 2 = – 2\\x + 2 = – 1\end{array} \right. \to \left[ \begin{array}{l}x = – 6\\x = – 4\\x = – 3\end{array} \right.\end{array}\) Bình luận
Đáp án:
\(\left[ \begin{array}{l}
x = – 6\\
x = – 4\\
x = – 3
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
DK:x \ne \left\{ { – 2;0;2} \right\}\\
A = \left( {\dfrac{1}{{x – 2}} – \dfrac{{2x}}{{4 – {x^2}}} + \dfrac{1}{{x + 2}}} \right).\left( {\dfrac{2}{x} – 1} \right)\\
= \left[ {\dfrac{{x + 2 + 2x + x – 2}}{{\left( {x – 2} \right)\left( {x + 2} \right)}}} \right].\left( {\dfrac{2}{x} – 1} \right)\\
= \dfrac{{4x}}{{\left( {x – 2} \right)\left( {x + 2} \right)}}.\dfrac{{2 – x}}{x}\\
= – \dfrac{4}{{x + 2}}\\
A \in {Z^ + }\\
\Leftrightarrow \dfrac{4}{{x + 2}} \in {Z^ – }\\
\Leftrightarrow x + 2 \in U\left( 4 \right)\\
\Leftrightarrow \left[ \begin{array}{l}
x + 2 = – 4\\
x + 2 = – 2\\
x + 2 = – 1
\end{array} \right. \to \left[ \begin{array}{l}
x = – 6\\
x = – 4\\
x = – 3
\end{array} \right.
\end{array}\)