cho biểu thức A= x+2/x+3 – 5/x^2+x-6 = 1/2-x a) tìm điều kiện của x để A có nghĩa b) rút gọn A c) tìm x để A = -3/4 29/07/2021 Bởi Skylar cho biểu thức A= x+2/x+3 – 5/x^2+x-6 = 1/2-x a) tìm điều kiện của x để A có nghĩa b) rút gọn A c) tìm x để A = -3/4
Đáp án: $\begin{array}{l}A = \frac{{x + 2}}{{x + 3}} – \frac{5}{{{x^2} + x – 6}} + \frac{1}{{2 – x}}\\a)Dkxd:\left\{ \begin{array}{l}x + 3 \ne 0\\{x^2} + x – 6 \ne 0\\2 – x \ne 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x \ne – 3\\x \ne 2\end{array} \right.\\b)A = \frac{{x + 2}}{{x + 3}} – \frac{5}{{{x^2} + x – 6}} + \frac{1}{{2 – x}}\\ = \frac{{x + 2}}{{x + 3}} – \frac{5}{{\left( {x + 3} \right)\left( {x – 2} \right)}} – \frac{1}{{x – 2}}\\ = \frac{{\left( {x + 2} \right)\left( {x – 2} \right) – 5 – \left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\\ = \frac{{{x^2} – 4 – 5 – x – 3}}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\\ = \frac{{{x^2} – x – 12}}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\\ = \frac{{\left( {x + 3} \right)\left( {x – 4} \right)}}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\\ = \frac{{x – 4}}{{x – 2}}\\c)x \ne – 3;x \ne 2\\A = – \frac{3}{4}\\ \Rightarrow \frac{{x – 4}}{{x – 2}} = – \frac{3}{4}\\ \Rightarrow 4\left( {x – 4} \right) = – 3\left( {x – 2} \right)\\ \Rightarrow 4x – 16 = – 3x + 6\\ \Rightarrow 7x = 22\\ \Rightarrow x = \frac{{22}}{7}\left( {tmdk} \right)\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
A = \frac{{x + 2}}{{x + 3}} – \frac{5}{{{x^2} + x – 6}} + \frac{1}{{2 – x}}\\
a)Dkxd:\left\{ \begin{array}{l}
x + 3 \ne 0\\
{x^2} + x – 6 \ne 0\\
2 – x \ne 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
x \ne – 3\\
x \ne 2
\end{array} \right.\\
b)A = \frac{{x + 2}}{{x + 3}} – \frac{5}{{{x^2} + x – 6}} + \frac{1}{{2 – x}}\\
= \frac{{x + 2}}{{x + 3}} – \frac{5}{{\left( {x + 3} \right)\left( {x – 2} \right)}} – \frac{1}{{x – 2}}\\
= \frac{{\left( {x + 2} \right)\left( {x – 2} \right) – 5 – \left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\\
= \frac{{{x^2} – 4 – 5 – x – 3}}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\\
= \frac{{{x^2} – x – 12}}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\\
= \frac{{\left( {x + 3} \right)\left( {x – 4} \right)}}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\\
= \frac{{x – 4}}{{x – 2}}\\
c)x \ne – 3;x \ne 2\\
A = – \frac{3}{4}\\
\Rightarrow \frac{{x – 4}}{{x – 2}} = – \frac{3}{4}\\
\Rightarrow 4\left( {x – 4} \right) = – 3\left( {x – 2} \right)\\
\Rightarrow 4x – 16 = – 3x + 6\\
\Rightarrow 7x = 22\\
\Rightarrow x = \frac{{22}}{7}\left( {tmdk} \right)
\end{array}$