cho bt p=(x-3/x+2-x-2/x+3+2-x/x2+5x+6):(1-x/x-1) a) rút gọn p b)tìm x nguyên để p nguyên c)tìm x để p>1 02/09/2021 Bởi aikhanh cho bt p=(x-3/x+2-x-2/x+3+2-x/x2+5x+6):(1-x/x-1) a) rút gọn p b)tìm x nguyên để p nguyên c)tìm x để p>1
Đáp án: c. \(\left[ \begin{array}{l}x > – 2\\x < – 3\end{array} \right.\) Giải thích các bước giải: \(DK:x \ne \left\{ { – 2; – 3} \right\}\) \(\begin{array}{l}a.P = \left( {\dfrac{{x – 3}}{{x + 2}} – \dfrac{{x – 2}}{{x + 3}} + \dfrac{{2 – x}}{{{x^2} + 5x + 6}}} \right):\left( {\dfrac{{1 – x}}{{x – 1}}} \right)\\ = \left[ {\dfrac{{{x^2} – 9 – {x^2} + 4 + 2 – x}}{{\left( {x + 2} \right)\left( {x + 3} \right)}}} \right]:\left( {\dfrac{{1 – x}}{{ – \left( {1 – x} \right)}}} \right)\\ = \dfrac{{ – 1 – x}}{{\left( {x + 2} \right)\left( {x + 3} \right)}}.\left( { – 1} \right)\\ = \dfrac{{x + 1}}{{\left( {x + 2} \right)\left( {x + 3} \right)}}\\b.P = \dfrac{{x + 1}}{{\left( {x + 2} \right)\left( {x + 3} \right)}} = \dfrac{{x + 2 – 1}}{{\left( {x + 2} \right)\left( {x + 3} \right)}}\\ = \dfrac{1}{{x + 3}} – \dfrac{1}{{\left( {x + 2} \right)\left( {x + 3} \right)}}\\P \in Z\\ \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{{x + 3}} \in Z\\\dfrac{1}{{\left( {x + 2} \right)\left( {x + 3} \right)}} \in Z\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x + 3 \in U\left( 1 \right)\\{x^2} + 5x + 6 \in U\left( 1 \right)\end{array} \right.\\ \to \left\{ \begin{array}{l}\left[ \begin{array}{l}x + 3 = 1\\x + 3 = – 1\end{array} \right.\\\left[ \begin{array}{l}{x^2} + 5x + 6 = 1\\{x^2} + 5x + 6 = – 1\left( l \right)\end{array} \right.\end{array} \right.\\ \to \left\{ \begin{array}{l}\left[ \begin{array}{l}x = – 2\\x = – 4\end{array} \right.\\\left[ \begin{array}{l}x = \dfrac{{ – 5 + \sqrt 5 }}{2}\\x = \dfrac{{ – 5 – \sqrt 5 }}{2}\end{array} \right.\end{array} \right.\end{array}\) ⇒ Không tồn tại x TMĐK \(\begin{array}{l}c.P > 1\\ \to \dfrac{{x + 1}}{{\left( {x + 2} \right)\left( {x + 3} \right)}} > 1\\ \to \dfrac{{x + 1 – {x^2} – 5x – 6}}{{\left( {x + 2} \right)\left( {x + 3} \right)}} > 0\\ \to \dfrac{{ – {x^2} – 4x – 5}}{{\left( {x + 2} \right)\left( {x + 3} \right)}} > 0\\ \to \left( {x + 2} \right)\left( {x + 3} \right) > 0\left( {do: – {x^2} – 4x – 5 < 0\forall x} \right)\\ \to \left[ \begin{array}{l}\left\{ \begin{array}{l}x + 2 > 0\\x + 3 > 0\end{array} \right.\\\left\{ \begin{array}{l}x + 2 < 0\\x + 3 < 0\end{array} \right.\end{array} \right.\\ \to \left[ \begin{array}{l}x > – 2\\x < – 3\end{array} \right.\end{array}\) Bình luận
Đáp án:
c. \(\left[ \begin{array}{l}
x > – 2\\
x < – 3
\end{array} \right.\)
Giải thích các bước giải:
\(DK:x \ne \left\{ { – 2; – 3} \right\}\)
\(\begin{array}{l}
a.P = \left( {\dfrac{{x – 3}}{{x + 2}} – \dfrac{{x – 2}}{{x + 3}} + \dfrac{{2 – x}}{{{x^2} + 5x + 6}}} \right):\left( {\dfrac{{1 – x}}{{x – 1}}} \right)\\
= \left[ {\dfrac{{{x^2} – 9 – {x^2} + 4 + 2 – x}}{{\left( {x + 2} \right)\left( {x + 3} \right)}}} \right]:\left( {\dfrac{{1 – x}}{{ – \left( {1 – x} \right)}}} \right)\\
= \dfrac{{ – 1 – x}}{{\left( {x + 2} \right)\left( {x + 3} \right)}}.\left( { – 1} \right)\\
= \dfrac{{x + 1}}{{\left( {x + 2} \right)\left( {x + 3} \right)}}\\
b.P = \dfrac{{x + 1}}{{\left( {x + 2} \right)\left( {x + 3} \right)}} = \dfrac{{x + 2 – 1}}{{\left( {x + 2} \right)\left( {x + 3} \right)}}\\
= \dfrac{1}{{x + 3}} – \dfrac{1}{{\left( {x + 2} \right)\left( {x + 3} \right)}}\\
P \in Z\\
\Leftrightarrow \left\{ \begin{array}{l}
\dfrac{1}{{x + 3}} \in Z\\
\dfrac{1}{{\left( {x + 2} \right)\left( {x + 3} \right)}} \in Z
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x + 3 \in U\left( 1 \right)\\
{x^2} + 5x + 6 \in U\left( 1 \right)
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\left[ \begin{array}{l}
x + 3 = 1\\
x + 3 = – 1
\end{array} \right.\\
\left[ \begin{array}{l}
{x^2} + 5x + 6 = 1\\
{x^2} + 5x + 6 = – 1\left( l \right)
\end{array} \right.
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\left[ \begin{array}{l}
x = – 2\\
x = – 4
\end{array} \right.\\
\left[ \begin{array}{l}
x = \dfrac{{ – 5 + \sqrt 5 }}{2}\\
x = \dfrac{{ – 5 – \sqrt 5 }}{2}
\end{array} \right.
\end{array} \right.
\end{array}\)
⇒ Không tồn tại x TMĐK
\(\begin{array}{l}
c.P > 1\\
\to \dfrac{{x + 1}}{{\left( {x + 2} \right)\left( {x + 3} \right)}} > 1\\
\to \dfrac{{x + 1 – {x^2} – 5x – 6}}{{\left( {x + 2} \right)\left( {x + 3} \right)}} > 0\\
\to \dfrac{{ – {x^2} – 4x – 5}}{{\left( {x + 2} \right)\left( {x + 3} \right)}} > 0\\
\to \left( {x + 2} \right)\left( {x + 3} \right) > 0\left( {do: – {x^2} – 4x – 5 < 0\forall x} \right)\\
\to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x + 2 > 0\\
x + 3 > 0
\end{array} \right.\\
\left\{ \begin{array}{l}
x + 2 < 0\\
x + 3 < 0
\end{array} \right.
\end{array} \right.\\
\to \left[ \begin{array}{l}
x > – 2\\
x < – 3
\end{array} \right.
\end{array}\)