Cho C= $2^{2}$ +$2^{3}$ +$2^{4}$ + …..+ $2^{99}$ +$2^{100}$ $\text{Tìm x để $2^{2x-1}$ -2=C}$ 23/11/2021 Bởi Maya Cho C= $2^{2}$ +$2^{3}$ +$2^{4}$ + …..+ $2^{99}$ +$2^{100}$ $\text{Tìm x để $2^{2x-1}$ -2=C}$
$\text{C=2²+2³+….+$2^{99}$ +$2^{100}$}$ -1C=2+$2^{2}$+….+ $2^{98}$ + $2^{99}$ $\text{C+-1C=C=$2^{101}$-2}$ $\text{⇒$2^{2x-1}$ – 2 = $2^{101}$-2}$ $\text{⇒$2^{2x-1}$=$2^{101}$}$ $\text{⇒2x-1=101}$ $\text{⇒2x=102}$ $\text{⇒x=51}$ Bình luận
Đáp án: $x = 51$ Giải thích các bước giải: Sửa đề: $C=2+ 2^2 + 2^3 + 2^4 + \dots +2^{99} + 2^{100}$ Ta có: $\begin{array}{l}\quad C= 2 + 2^2 + 2^3 + \dots +2^{99} + 2^{100}\\\to 2C = 2^2+2^3 + 2^4+\dots + 2^{100}+ 2^{101}\\\to 2C – C = (2^2 +2^3 + 2^4 + 2^5 +\dots + 2^{100}+ 2^{101}) – (2+ 2^2 + 2^3 + 2^4 + \dots +2^{99} + 2^{100})\\\to C = 2^{101} – 2\end{array}$ Ta được: $\begin{array}{l}\quad 2^{\displaystyle{2x-1}} -2 = C\\\to 2^{\displaystyle{2x-1}} -2 = 2^{101} – 2\\\to 2^{\displaystyle{2x-1}}= 2^{101}\\\to 2x – 1 = 101\\\to 2x = 102\\\to x = 51\end{array}$ Bình luận
$\text{C=2²+2³+….+$2^{99}$ +$2^{100}$}$
-1C=2+$2^{2}$+….+ $2^{98}$ + $2^{99}$
$\text{C+-1C=C=$2^{101}$-2}$
$\text{⇒$2^{2x-1}$ – 2 = $2^{101}$-2}$
$\text{⇒$2^{2x-1}$=$2^{101}$}$
$\text{⇒2x-1=101}$
$\text{⇒2x=102}$
$\text{⇒x=51}$
Đáp án:
$x = 51$
Giải thích các bước giải:
Sửa đề:
$C=2+ 2^2 + 2^3 + 2^4 + \dots +2^{99} + 2^{100}$
Ta có:
$\begin{array}{l}\quad C= 2 + 2^2 + 2^3 + \dots +2^{99} + 2^{100}\\
\to 2C = 2^2+2^3 + 2^4+\dots + 2^{100}+ 2^{101}\\
\to 2C – C = (2^2 +2^3 + 2^4 + 2^5 +\dots + 2^{100}+ 2^{101}) – (2+ 2^2 + 2^3 + 2^4 + \dots +2^{99} + 2^{100})\\
\to C = 2^{101} – 2\end{array}$
Ta được:
$\begin{array}{l}\quad 2^{\displaystyle{2x-1}} -2 = C\\
\to 2^{\displaystyle{2x-1}} -2 = 2^{101} – 2\\
\to 2^{\displaystyle{2x-1}}= 2^{101}\\
\to 2x – 1 = 101\\
\to 2x = 102\\
\to x = 51
\end{array}$