cho C= $\frac{1}{căn x+1}$ -$\frac{3}{x.căn x+1}$ +$\frac{2}{x-căn x+1}$ a)rút gọn biểu thức C b)chứng minh C<1 01/07/2021 Bởi Mackenzie cho C= $\frac{1}{căn x+1}$ -$\frac{3}{x.căn x+1}$ +$\frac{2}{x-căn x+1}$ a)rút gọn biểu thức C b)chứng minh C<1
Giải thích các bước giải: Ta có: $C=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}$ $\to C=\dfrac{x-\sqrt{x}+1}{(\sqrt{x}+1)(x-\sqrt{x}+1)}-\dfrac3{(\sqrt{x}+1)(x-\sqrt{x}+1)}+\dfrac{2(\sqrt{x}+1)}{(\sqrt{x}+1)(x-\sqrt{x}+1)}$ $\to C=\dfrac{x-\sqrt{x}+1-3+2(\sqrt{x}+1)}{(\sqrt{x}+1)(x-\sqrt{x}+1)}$ $\to C=\dfrac{x+\sqrt{x}}{(\sqrt{x}+1)(x-\sqrt{x}+1)}$ $\to C=\dfrac{\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}+1)(x-\sqrt{x}+1)}$ $\to C=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}$ b.Ta có: $C=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}$ $\to 1-C=1-\dfrac{\sqrt{x}}{x-\sqrt{x}+1}$ $\to 1-C=\dfrac{x-\sqrt{x}+1-\sqrt{x}}{x-\sqrt{x}+1}$ $\to 1-C=\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}+1}$ $\to 1-C=\dfrac{(\sqrt{x}-1)^2}{x-\sqrt{x}+1}$ Mà $x-\sqrt{x}+1=(\sqrt{x}-\dfrac12)^2+\dfrac34>0$ $\to \dfrac{(\sqrt{x}-1)^2}{x-\sqrt{x}+1}\ge 0$ $\to 1-C\ge 0$ $\to C\le 1$ Bình luận
Giải thích các bước giải:
Ta có:
$C=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}$
$\to C=\dfrac{x-\sqrt{x}+1}{(\sqrt{x}+1)(x-\sqrt{x}+1)}-\dfrac3{(\sqrt{x}+1)(x-\sqrt{x}+1)}+\dfrac{2(\sqrt{x}+1)}{(\sqrt{x}+1)(x-\sqrt{x}+1)}$
$\to C=\dfrac{x-\sqrt{x}+1-3+2(\sqrt{x}+1)}{(\sqrt{x}+1)(x-\sqrt{x}+1)}$
$\to C=\dfrac{x+\sqrt{x}}{(\sqrt{x}+1)(x-\sqrt{x}+1)}$
$\to C=\dfrac{\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}+1)(x-\sqrt{x}+1)}$
$\to C=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}$
b.Ta có:
$C=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}$
$\to 1-C=1-\dfrac{\sqrt{x}}{x-\sqrt{x}+1}$
$\to 1-C=\dfrac{x-\sqrt{x}+1-\sqrt{x}}{x-\sqrt{x}+1}$
$\to 1-C=\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}+1}$
$\to 1-C=\dfrac{(\sqrt{x}-1)^2}{x-\sqrt{x}+1}$
Mà $x-\sqrt{x}+1=(\sqrt{x}-\dfrac12)^2+\dfrac34>0$
$\to \dfrac{(\sqrt{x}-1)^2}{x-\sqrt{x}+1}\ge 0$
$\to 1-C\ge 0$
$\to C\le 1$